You are here

Don't Nuke the Climate

Nuclear weapons and our climate

Nuclear Monitor Issue: 
#880
19/11/2019
Assoc. Prof. Tilman Ruff ‒ International Campaign to Abolish Nuclear Weapons (Australia)
Article

What effect would nuclear war have on the climate? What has nuclear power generation got to do with nuclear proliferation? How could the massive amounts of radioactivity inside nuclear reactors, fuel and waste storages cause radiological contamination akin to nuclear weapons? Could nuclear facilities themselves be turned into weapons? This paper addresses the connections between our climate, nuclear weapons, nuclear power and the stuff that puts the 'nuclear' in nuclear weapons.

Nuclear weapons pose the greatest acute danger to earth's climate

Global warming is upon us – in overwhelming scientific evidence, increasingly palpable in our lives, impossible to ignore. It is accelerating. Most of us now understand how crucial to human and planetary health is a stable and hospitable climate and securing this is the defining challenge of our age. Human disruptions to climate are frequently discussed, yet too few of us are aware that the most acute, immediate danger to our climate comes from nuclear weapons.

Studies by some of the world's best atmospheric scientists show that less than 0.5% of the global nuclear arsenal, targeted on cities in just one region of the world, would ignite massive firestorms that would loft millions of tons of smoke high into the atmosphere, beyond the reach of rain and snow. This smoke would blanket the entire globe within a few weeks, and cool, dry and darken the world beneath for more than two decades. The dark smoke in the stratosphere and above would be warmed by the sun, heating the upper atmosphere by more than 50℃, and rapidly depleting the ozone which protects us from the Sun's harmful ultraviolet (UV) radiation.1

100 Hiroshima size bombs – 0.1% of the explosive power of the global nuclear arsenal – for example used in a war between India and Pakistan, would produce over 5 million tons of smoke, cooling average surface temperatures by 1.5℃, with much greater declines of 5-8℃ over large land masses. The resulting sustained decline in food production worldwide would put 2 billion people at risk of starving to death.2 The combined current arsenals of India and Pakistan ‒ the world's most rapidly growing ‒ now consists of 270-290 nuclear weapons of at least Hiroshima size.3

This abrupt nuclear famine would be exacerbated by chemical and radioactive contamination of large areas; levels of UV radiation harmful to humans as well as plants and animals on land and in the sea; disruption to transport, agricultural trade and distribution of seed, fertiliser, fuel and pesticides. Historically, large-scale famines have inevitably been accompanied by epidemics of infectious diseases, and often by conflict within and sometimes between nations, all of which would magnify the human toll and environmental impact.

The burning cities from a nuclear war using only the long-range nuclear weapons that Russia and the US keep on hair-trigger alert, ready to be launched within a few minutes, would put 50 million tons of smoke into the atmosphere. This would produce average ice age conditions, 5℃ colder than present. Launch of all Russian and US long-range nuclear weapons would result in global temperatures plummeting 10℃, a severe abrupt ice age that would in all probability end human ‒ and much other ‒ life.4

Nuclear weapons and unchecked climate change pose the twin existential threats to our future. They exacerbate each other and both need to be addressed. One diminishes our biosphere every day, the other could deplete it irrevocably and end human civilisation in less than a day. It is imperative for planetary and human health that we prevent both runaway global warming and an abrupt nuclear winter. The only reliable way to prevent nuclear war is to eliminate nuclear weapons before they are otherwise inevitably used again. If we do not succeed in eliminating nuclear weapons in time, achievements and aspirations in every other sphere could become tragically irrelevant in less than an hour.

A climate-stressed world is an even more dangerous place for nuclear weapons

"[A]fter nuclear war, human induced global warming is the greatest threat to human life on the planet." ‒ Admiral Chris Barrie, AC RAN Retired, Chief of the Australian Defence Force 1998-2002.5

The world's most senior diplomat, UN Secretary-General Antonio Guterres, has said: "We are living in dangerous times. … We are on the brink of a new cold war" and described "a resurgence of civil conflict, after more than two decades of decline."6

Military and security establishments worldwide assess that global warming is a pre-eminent and accelerating threat to security that amplifies other threats. The United States intelligence community annual assessment of worldwide threats provided to the US Congress on 29 January 2019 warned that the effects of climate change and environmental degradation increase stress on communities around the world and intensify global instability and the likelihood of conflict, causing the danger of nuclear war to grow.7

The number of violent conflicts worldwide which are internationalised, involving at least one state outside the area of direct conflict, has increased sharply, from no more than 6 per year in the two decades prior to 2010, to 20 per year by 2017.8 Growing food and water insecurity and other stresses exacerbated by climate change are helping to drive this upsurge in armed conflict, and contributing to the highest ever number of people forcibly displaced worldwide ‒ reaching 70.8 million at end-2018.9

Nuclear power fuels nuclear proliferation

It was recognised by the Ranger Uranium Environmental Inquiry in 1977, which preceded the expansion of commercial uranium mining in Australia, that nuclear power contributes to an increased risk of nuclear war, and that "this is the most serious hazard associated with the industry."10

Any uranium enrichment plant can be used to produce not only reactor grade uranium, but weapons grade uranium. Currently 14 nations have such plants.11 Laser enrichment technology initially developed in Australia could make enriching uranium more compact and concealable.12 Highly enriched uranium (HEU, containing >20% U-235) is one of the two fissile materials used to build nuclear weapons. The other is plutonium, inevitably produced inside nuclear reactors as uranium atoms absorb neutrons. Plutonium contained in spent nuclear fuel can then be chemically extracted at some future time.

South Africa, Pakistan and North Korea primarily used the HEU route to build nuclear weapons; India and Israel primarily used a plutonium route. All used facilities and fuel that were ostensibly for peaceful purposes. Both France and the UK have used reactors which also produced electricity to produce plutonium and tritium for nuclear weapons.13

Australian history underscores the inseparable 'Trojan horse' connections. The government of PM John Gorton commenced construction of Australia's first nuclear power reactor at Jervis Bay in NSW in the late 1960s largely to accelerate Australia's capacity to build its own nuclear weapons. Australian Atomic Energy Commission chair J.P. Baxter spoke of "the indissoluble connection between the peaceful and military uses of nuclear materials". A briefing to the Minister for the Interior in 1969 stated: "From discussions with the AAEC officers it is understood that in establishing the Australian nuclear power industry it is desired to provide for the possibility of producing nuclear weapons …". The same year Gorton ally minister WC Wentworth MP wrote to then Defence Minister Malcom Fraser: "… everything we do must be capable of presentation as a normal move in peaceful atomic industry. In this way we can hope to get a 'short-term nuclear option' without giving open offence, and then, at some future date, if events require it, take up the option without giving this offence time to accumulate …".14

Nuclear weapons, depending on their size and technical sophistication, contain several kg of plutonium, and/or about 3 times as much HEU. US nuclear weapons on average contain 4 kg of plutonium and 12 kg of HEU.15 Current global stockpiles of fissile materials – 1340 tons of HEU and 520 tons of separated plutonium16 – are sufficient to build around 200,000 nuclear weapons. Thus ending production of fissile materials, keeping current stocks extremely securely, preferably under international control, and eliminating these materials wherever possible will be crucial to achieving and sustaining a world free of nuclear weapons.

The twin concurrent existential threats that confront us, climate disruption and nuclear war, demand win-win solutions. Promotion of nuclear power as a claimed climate friendly energy source is a lose-lose proposition.

As noted in 2010 by the Board of the Bulletin of the Atomic Scientists in setting the hands of the Doomsday Clock – an authoritative indicator of our global proximity to existential peril, "Nuclear war is a terrible trade for slowing the pace of climate change."17

As the costs of nuclear power have risen to become more than twice as expensive as either wind or solar power with storage, the motivation of some governments to maintain civilian nuclear infrastructure and workforce expertise in order to support their nuclear weapons programs has become increasingly obvious, including in France, Russia, UK and US.18

Nuclear reactors create enormous radiological hazards

Nuclear reactors and their spent fuel pools contain large amounts of radioactivity which is more long-lived than that produced by nuclear weapons. Both require continuous cooling. Unlike the several layers of engineered containment around nuclear reactors, spent fuel pools have no containment other than a simple roof over them. At the Fukushima Daiichi plant severely damaged in the 2011 nuclear disaster, 70% of the total radioactivity at the site was in the spent fuel pools.

Nuclear physicist and Nobel Peace Laureate Joseph Rotblat wrote in 1981 about nuclear reactors with remarkable prescience in his book Nuclear radiation in warfare:19

"But despite this heavy protection, modern precision-guided bombardment with conventional weapons could succeed in rupturing the containment vessel as well as the pressure vessel. Alternatively, the task might be achieved in a commando raid, as was carried out on a heavy water plant during World War II. … In a pressurised water reactor the melt-down of the core could occur within less than one minute after the loss of coolant; with other types of reactor it might take a few minutes. … If a group took over a reactor they would not need to blow up the heavy biological shield of the pressure vessel; all they would have to do would be to cut off the supply of cooling water to bring about core melt-down."

What happened in Fukushima because of poor design and a large earthquake and tsunami could equally happen because of commandos or terrorists disrupting the power or cooling water supply for reactors and/or spent fuel pools for long enough to cause meltdown and/or explosions. Such an event could also occur because of cyberattack; or as a result of electricity supply and electronic equipment failure caused by the electromagnetic pulse (EMP) generated by a single high-altitude nuclear explosion, which could simultaneously disrupt nuclear reactors across a whole continent.

Rotblat further showed that nuclear attack on nuclear reactors or spent fuel storages would massively increase the resulting radioactive fallout. A 1 megaton (Mt) nuclear detonation would typically blanket an area of 2000 km2 with a (sizable) radiation dose of 1 Gray between 1 month and 1 year afterwards. The area so contaminated following a 1 Mt nuclear explosion on a typical 1 GW power reactor would be 34,000 km2, and 61,000 km2 were a spent fuel storage tank targeted. While radioactive releases from nuclear reactors subject to attack have not been documented, this is largely fortuitous, and a number of attacks on nuclear reactors have taken place These include multiple attacks between Iran and Iraq during their 1980-8 war, Israel's destruction through airstrikes of nuclear reactors under construction in Iraq (1981) and Syria (2007), the South African ANC attack on the Koeberg nuclear power plant with mines while it was under construction, 1991 US attacks on various Iraqi nuclear facilities and Iraq's firing of Scud missiles at Israel's Dimona nuclear reactor.

Thus each of the 413 operating nuclear power reactors in 31 countries, spent fuel storage facilities, reprocessing plants and other large nuclear facilities are effectively large pre-positioned radiological weapons. Many are located in or near large population centres. While attacks on or other disruption of these would not produce nuclear explosions, they could cause severe and extensive radioactive contamination requiring the long-term evacuation of large areas.

Conclusion

The web of links between nuclear weapons, nuclear reactors, and the materials that power both are deep and inextricable. Nuclear power cannot solve our climate crisis, and aggravates the existential danger posed by nuclear weapons. Out of the climate crisis frying pan and into the fire of radioactive incineration, nuclear ice age and famine is a lose-lose dance with extinction. Our understanding of our climate crisis challenge needs to broaden to include the jeopardy of abrupt nuclear winter. A healthy and sustainable future for all life on Earth requires that we act to rapidly transition to renewable energy systems and net zero carbon emissions, and that we prohibit and eliminate nuclear weapons, with the utmost urgency demanded of us.

The most effective way for Australia and all nations to lift the nuclear threat and build security for their own and all people is to join and implement the historic UN Treaty on the Prohibition of Nuclear Weapons.20 The Treaty recognises the incontrovertible evidence: "that the catastrophic consequences of nuclear weapons cannot be adequately addressed, transcend national borders, pose grave implications for human survival, the environment, socioeconomic development, the global economy, food security and the health of current and future generations, and have a disproportionate impact on women and girls, including as a result of ionizing radiation."

The Treaty provides a categorical and comprehensive prohibition of nuclear weapons. It further provides a path that all nations, with and without nuclear weapons, can take to fulfil their binding obligation to eliminate the world's worst weapons of mass destruction. It is the only internationally defined path towards a world freed from nuclear weapons.
The Treaty builds on the substantial progress made to control biological and chemical weapons, landmines and cluster munitions. A treaty codifying rejection of the weapon and providing one standard for all nations has been key to progress for every indiscriminate and inhumane weapon. Indeed no unacceptable weapon has been controlled without a treaty proscribing it. Australia needs to get on the right side of history and join this Treaty, soon.

Assoc. Prof. Tilman Ruff is the founding international and Australian chair of the International Campaign to Abolish Nuclear Weapons (ICAN); a public health and infectious diseases physician, associate professor at the University of Melbourne; international medical advisor for Australian Red Cross; and Co-President of International Physicians for the Prevention of Nuclear War.

Reprinted from ICAN Australia: https://icanw.org.au/wp-content/uploads/Nuclear-weapons-and-our-climate-...

References

1. Michael Mills, Owen Toon, Julia Lee-Taylor, Alan Robock, "Multi-decadal global cooling and unprecedented ozone loss following a regional nuclear conflict," Earth's Future, 2015; 2:161–76. Updated data are provided in brief here: Owen Toon, Charles Bardeen, Alan Robock, RJ Peterson, Lili Xia, "Rapid expansion of nuclear arsenals by Pakistan and India threatens regional and global catastrophes," American Geophysical Union Fall Meeting, Washington DC, Dec 2018, GC33B-12.

2. Ira Helfand, Nuclear Famine: Two Billion People at Risk. Boston, International Physicians for the Prevention of Nuclear War, 2013.

3. Hans M. Kristensen, Matt Korda, "Status of world nuclear forces," Federation of American Scientists, July 2019, https://fas.org/issues/nuclear-weapons/status-world-nuclear-forces/.

4. Owen Toon, Alan Robock, Michael Mills, Lili Xia, "Asia treads the nuclear path, unaware that self-assured destruction would result from nuclear war," J Asian Studies 2017;76:437-56; Alan Robock, Luke Oman, Georgiy L Stenchikov, "Nuclear winter revisited with a modern climate model and current nuclear arsenals: Still catastrophic consequences" J Geophys Res 2007;112: D13107.

5. Chris Barrie, Foreword, in: David Spratt, Ian Dunlop, Existential climate-related security risk: a scenario approach, Breakthrough – National Centre for Climate Restoration, May 2019.

6. Office for Disarmament Affairs, Securing our common future. An agenda for disarmament, New York, UN, October 2018.

7. US Congress, "McGovern-Blumenauer House Resolution 302. Embracing the goals and provisions of the Treaty on the Prohibition of Nuclear Weapons," 8 April 2019, https://mcgovern. house.gov/uploadedfiles/mcgove_010_xml.pdf

8. World Bank Group, United Nations, Pathways for Peace. Inclusive Approaches to Preventing Violent Conflict. The World Bank, Washington DC, 2018:18.

9. UNHCR. Global Trends. Forced displacement in 2018. UNHCR, Geneva, 20 June 2019.

10. Commonwealth of Australia. Ranger Uranium Environmental Inquiry. First Report. AGPS, Canberra, 1977:185.

11. International Panel on Fissile Materials. Facilities: Enrichment plants, updated 12 Feb 2018, http://fissilematerials.org/facilities/enrichment_plants.html

12. http://www.silex.com.au/SILEX-Laser-Uranium-EnrichmentTechnology; Ryan Snyder, "A proliferation assessment of third generation laser enrichment technology", Science & Global Security, 2016;24(2):68-91.

13. Harold Feiveson, Alexander Glaser, Zia Mian, Frank von Hippel. Unmaking the bomb. MIT Press, 2014.

14. Lachlan Clohesy, Phillip Deery, "The prime minister and the bomb: John Gorton, W.C. Wentworth and the quest for an atomic Australia", Aust J Politics and History, 2015, 61(2):217-32.

15. International Panel on Fissile Materials, "Appendix 1. Fissile materials and nuclear weapons", Global fissile material report 2015.

16. International Panel on Fissile Materials, Fissile material stocks, Jan 2017, 12 Feb 2018, http://fissilematerials.org

17. Bulletin of the Atomic Scientists, It is 6 minutes to midnight, 14 Jan 2010.

18. Mycle Schneider, Anthony Froggat, et al, The World Nuclear Industry Status Report 2018, Paris, London September 2018.

19. Joseph Rotblat, Nuclear radiation in warfare, SIPRI, Taylor & Francis, London, 1981:125-130.

20. ICAN Australia, Choosing humanity: Why Australia must join the Treaty on the Prohibition of Nuclear Weapons, July 2019: https://icanw.org.au/choosinghumanity

Nuclear Power ‒ No Solution to Climate Change

Nuclear Monitor Issue: 
#879
04/11/2019
Jim Green ‒ Nuclear Monitor editor
Article

1. Nuclear Power Would Inhibit the Development of More Effective Solutions

2. Small Modular Reactors vs. Small Modular Renewables

3. A Slow Response to an Urgent Problem

4. Catastrophic Cost Overruns: The Nuclear Power Industry is in Crisis

5. Nuclear Weapons Proliferation and Nuclear Winter

6. Climate Change & Nuclear Hazards: 'You need to solve global warming for nuclear plants to survive'.

7. Nuclear Waste

Proposals to expand nuclear power in order to reduce greenhouse emissions are misguided and should be rejected for the reasons discussed below ‒ and others not discussed here, including the risks and impacts of catastrophic accidents.

Nuclear Power Would Inhibit the Development of More Effective Solutions

"You can spend a dollar, a euro, a forint or a ruble only once: the climate emergency requires that investment decisions must favor the cheapest and fastest response strategies. The nuclear power option has consistently turned out the most expensive and the slowest." ‒ World Nuclear Industry Status Report project coordinator Mycle Schneider.1

Renewable power generation is far cheaper than nuclear power. Lazard's November 2018 report on levelized costs of electricity found that wind power (US$29‒56 per megawatt-hour) and utility-scale solar (US$36‒46 / MWh) are several times cheaper than nuclear power (US$112‒189 / MWh).2

Thus the pursuit of nuclear power would inhibit the necessary rapid development of solutions that are cheaper, safer, more environmentally benign, and enjoy far greater public support.

Globally, renewable electricity generation has doubled over the past decade and costs have declined sharply. Renewables account for about 26.2% of global electricity generation.3 Conversely, nuclear costs have increased massively over the past decade4 and nuclear power's share of global electricity generation has fallen from its 1996 peak of 17.5% to its current share of 10.15%.5

As with renewables, energy efficiency and conservation measures are far cheaper and less problematic than nuclear power. A University of Cambridge study concluded that 73% of global energy use could be saved by energy efficiency and conservation measures.6

The 2019 edition of the World Nuclear Industry Status Report includes a chapter on climate change and nuclear power, which concludes with these words:7

"Stabilizing the climate needs solutions that are "granular, modular, mass-producible, fungible, quickly installable by diverse actors with little institutional preparation, and ‒ most importantly ‒ propelled by the powerful feedback of increasing returns and learning-by-doing." That describes energy efficiency and modern renewables but not nuclear power. Stabilizing the climate is urgent, but nuclear power is slow. It meets no technical or operational need that these low-carbon competitors cannot meet better, cheaper, and faster.

"Even sustaining economically distressed reactors saves less carbon per dollar and per year than reinvesting its avoidable operating cost (let alone its avoidable new subsidies) into cheaper efficiency and renewables. Whatever the rationales for continuing and expanding nuclear power, for climate protection it has become counterproductive, and the new subsidies and decision rules its owners demand would dramatically slow this decade's encouraging progress toward cheaper, faster options, more climate-effective solutions."

2. Small Modular Reactors vs. Small Modular Renewables

Electricity from small modular reactors (SMRs) will almost certainly be more expensive than power from large reactors because of diseconomies of scale.8 A 2018 report by the CSIRO and the Australian Energy Market Operator found that power from SMRs would be more than twice as expensive as wind or solar power with storage costs included (two hours of battery storage or six hours of pumped hydro storage).9 The cost of the small number of SMRs under construction is exorbitant.10 Both the private sector and governments have been unwilling to invest in SMRs because of their poor prospects.11

An article by researchers from Carnegie Mellon University's Department of Engineering and Public Policy, published in 2018 in the Proceedings of the National Academy of Science, concludes that to develop an SMR industry in the US, "several hundred billion dollars of direct and indirect subsidies would be needed to support their development and deployment over the next several decades".12

The prevailing skepticism is evident in a 2017 Lloyd's Register report based on the insights of almost 600 professionals and experts from utilities, distributors, operators and equipment manufacturers. They predict that SMRs have a "low likelihood of eventual take-up, and will have a minimal impact when they do arrive".13

No SMRs are operating and about half of the small number under construction have nothing to do with climate change abatement ‒ on the contrary, they are designed to facilitate access to fossil fuel resources in the Arctic, the South China Sea and elsewhere.14 Worse still, there are disturbing connections between SMRs, nuclear weapons proliferation and militarism more generally.15

The 2019 edition of the World Nuclear Industry Status Report states:5

"As a matter of physics, reactors do not scale down well, so the more-careful analysts acknowledge SMRs ‒ including in China ‒ would initially cost significantly (often about twofold) more per kWh than today's gigawatt-scale reactors. But ... today's new-build reactors already have ~5–10 times the levelized cost of modern renewables (let alone efficiency) per kWh. On durable observed learning curves (which nuclear power has never displayed), renewables will become another twofold cheaper by the time SMRs could be built, tested, and scaled. Two times 5–10 times two is a factor of 20–40 ‒ far beyond any plausible saving from mass production. No nuclear miracle is waiting to emerge.

"Small Modular Renewables, which do scale down well and whose economies of mass production have several decades' head start, have decisively won on cost."

3. A Slow Response to an Urgent Problem

Expanding nuclear power is impractical as a short-term response to climate change. Planning and approvals can take a decade (particularly for nuclear 'newcomer' countries), and construction another decade, and it can take five years or more to repay the energy debt expended in the construction of the reactor. A University of Sydney report states: "The energy payback time of nuclear energy is around 6.5 years for light water reactors, and 7 years for heavy water reactors, ranging within 5.6–14.1 years, and 6.4–12.4 years, respectively."16

Taking into account planning and approvals, construction, and the energy payback time, it would be a quarter of a century or more before nuclear power could even begin to reduce greenhouse emissions in a nuclear newcomer country ... and then only assuming that nuclear power displaced fossil fuels.

The 2019 edition of the World Nuclear Industry Status Report states:5

"According to a recent assessment, new nuclear plants take 5–17 years longer to build than utility-scale solar or onshore wind power, so existing fossil-fueled plants emit far more CO2 while awaiting substitution by the nuclear option. In 2018, non-hydro renewables outpaced the world's most aggressive nuclear program, in China, by a factor of two, in India by a factor of three.

"Stabilizing the climate is urgent, nuclear power is slow. It meets no technical or operational need that these low-carbon competitors cannot meet better, cheaper, and faster. Even sustaining economically distressed reactors saves less carbon per dollar and per year than reinvesting its avoidable operating cost (let alone its avoidable new subsidies) into cheaper efficiency and renewables."

4. Catastrophic Cost Overruns: The Nuclear Power Industry is in Crisis

Supporters of nuclear power have issued any number of warnings17 in recent years about nuclear power's "rapidly accelerating crisis" and a "crisis that threatens the death of nuclear energy in the West". They accept that "the industry is on life support in the United States and other developed economies", and they argue with each other about what if anything might be salvaged from the "ashes of today's dying industry".18

Consider the following statements, many of them from nuclear industry insiders:

  • "I don't think we're building any more nuclear plants in the United States. I don't think it's ever going to happen. They are too expensive to construct." ‒ William Von Hoene, Senior Vice-President of Exelon, 2018.19
  • Nuclear power "just isn't economic, and it's not economic within a foreseeable time frame." ‒ John Rowe, recently-retired CEO of Exelon, 2012.20
  • "It's just hard to justify nuclear, really hard." ‒ Jeffrey Immelt, General Electric's CEO, 2012.21
  • "I don't think anybody's pretending you can take forward a new nuclear power station without some form of government underwriting or support." ‒ Sir John Armitt, chair of the UK National Infrastructure Commission, 2018.22
  • France's nuclear industry is in its "worst situation ever"23, a former EDF director said in November 2016 ‒ and the situation has worsened since then.24
  • Nuclear power is "ridiculously expensive" and "uncompetitive" with solar. ‒ Nobuo Tanaka, former executive director of the International Energy Agency, and former executive board member of the Japan Atomic Industrial Forum, 2018.25
  • Compounding problems facing nuclear developers "add up to something of a crisis for the UK's nuclear new-build programme." ‒ Tim Yeo, former Conservative parliamentarian and now a nuclear industry lobbyist, 2017.26
  • "It sometimes seems like U.S. and European nuclear companies are in competition to see which can heap greater embarrassment on their industry." ‒ Financial Times, 2017, 'Red faces become the norm at nuclear power groups'.27
  • "I don't think a CEO of a utility could in good conscience propose a nuclear-power reactor to his or her board of directors." ‒ Alan Schriesheim, director emeritus of Argonne National Laboratory, 2014.28
  • "New-build nuclear in the West is dead" due to "enormous costs, political and popular opposition, and regulatory uncertainty" ‒ Morningstar market analysts Mark Barnett and Travis Miller, 2013.29
  • "Nuclear construction on-time and on-budget? It's essentially never happened." ‒ Andrew J. Wittmann, financial analyst with Robert W. Baird & Co., 2017.30

US nuclear industry insider Jim Little summarizes one thread of the nuclear power crisis:31

"One of the more disconcerting and difficult issues facing the industry is a loss of talent and experience right at a time when it is most needed to transfer knowledge to the next generation. The nuclear workforce demographic contains a large percentage of experienced talent reaching retirement age within the next five to ten years. With fewer people entering the industry, addressing the needs of the operating fleet will become more and more difficult and expensive. Further efforts to reduce costs by trimming workforces would only exacerbate the problem."

It makes no sense to be pinning expectations on nuclear power when the industry is crisis-ridden and incapable of delivering. It does make sense to phase-out nuclear power, as a growing number of countries are doing including Germany, Switzerland, Spain, Belgium, Taiwan and South Korea.

5. Nuclear Weapons Proliferation and Nuclear Winter

"On top of the perennial challenges of global poverty and injustice, the two biggest threats facing human civilisation in the 21st century are climate change and nuclear war. It would be absurd to respond to one by increasing the risks of the other. Yet that is what nuclear power does." ‒ Australian academic Dr. Mark Diesendorf

Nuclear power programs have provided cover for numerous covert weapons programs32 and an expansion of nuclear power would exacerbate the problem. After decades of deceit and denial33, a growing number of nuclear industry bodies and lobbyists now openly acknowledge and even celebrate the connections between nuclear power and weapons.34 They argue that troubled nuclear power programs should be further subsidized such that they can continue to underpin and support weapons programs.35

For example, US nuclear lobbyist Michael Shellenberger previously denied power‒weapons connections but now argues that "having a weapons option is often the most important factor in a state pursuing peaceful nuclear energy", that "at least 20 nations sought nuclear power at least in part to give themselves the option of creating a nuclear weapon", and that "in seeking to deny the connection between nuclear power and nuclear weapons, the nuclear community today finds itself in the increasingly untenable position of having to deny these real world connections."36

Former US Vice President Al Gore has neatly summarized the problem:37

"For eight years in the White House, every weapons-proliferation problem we dealt with was connected to a civilian reactor program. And if we ever got to the point where we wanted to use nuclear reactors to back out a lot of coal ... then we'd have to put them in so many places we'd run that proliferation risk right off the reasonability scale."

Running the proliferation risk off the reasonability scale brings the debate back to climate change. Nuclear warfare − even a limited, regional nuclear war involving a tiny fraction of the global arsenal − has the potential to cause catastrophic climate change. The problem is explained by Alan Robock in The Bulletin of the Atomic Scientists:38

"[W]e now understand that the atmospheric effects of a nuclear war would last for at least a decade − more than proving the nuclear winter theory of the 1980s correct. By our calculations, a regional nuclear war between India and Pakistan using less than 0.3% of the current global arsenal would produce climate change unprecedented in recorded human history and global ozone depletion equal in size to the current hole in the ozone, only spread out globally."

Nuclear plants are also vulnerable to security threats such as conventional military attacks (and cyber-attacks such as Israel's Stuxnet attack on Iran's enrichment plant), and the theft and smuggling of nuclear materials. Examples of military strikes on nuclear plants include the destruction of research reactors in Iraq by Israel and the US; Iran's attempts to strike nuclear facilities in Iraq during the 1980−88 war (and vice versa); Iraq's attempted strikes on Israel's nuclear facilities; and Israel's bombing of a suspected nuclear reactor site in Syria in 2007.39

6. Climate Change & Nuclear Hazards: 'You need to solve global warming for nuclear plants to survive.'

"I've heard many nuclear proponents say that nuclear power is part of the solution to global warming. It needs to be reversed: You need to solve global warming for nuclear plants to survive." ‒ Nuclear engineer David Lochbaum.40

Nuclear power plants are vulnerable to threats which are being exacerbated by climate change.41 These include dwindling and warming water sources, sea-level rise, storm damage, drought, and jelly-fish swarms. Research by Ensia finds that at least 100 nuclear power reactors built just a few metres above sea level could be threatened by serious flooding caused by accelerating sea-level rise and more frequent storm surges.42

At the lower end of the risk spectrum, there are countless examples of nuclear plants operating at reduced power or being temporarily shut down due to water shortages or increased water temperature during heatwaves (which can adversely affect reactor cooling and/or cause fish deaths and other problems associated with the dumping of waste heat in water sources). In the US, for example, unusually hot temperatures in 2018 forced nuclear plant operators to reduce reactor power output more than 30 times.43

At the upper end of the risk spectrum, climate-related threats pose serious risks such as storms cutting off grid power, leaving nuclear plants reliant on generators for reactor cooling.

'Water wars' will become increasingly common with climate change − disputes over the allocation of increasingly scarce water resources between power generation, agriculture and other uses. Nuclear power reactors consume massive amounts of cooling water − typically 36.3 to 65.4 million liters per reactor per day.44 The World Resources Institute noted last year that 47% of the world's thermal power plant capacity ‒ mostly coal, natural gas and nuclear ‒ are located in highly water-stressed areas.45

By contrast, the REN21 Renewables 2015: Global Status Report states:46

"Although renewable energy systems are also vulnerable to climate change, they have unique qualities that make them suitable both for reinforcing the resilience of the wider energy infrastructure and for ensuring the provision of energy services under changing climatic conditions. System modularity, distributed deployment, and local availability and diversity of fuel sources − central components of energy system resilience − are key characteristics of most renewable energy systems."

7. Nuclear Waste

Globally, countries operating nuclear power plants are struggling to manage nuclear waste and no country has a repository for the disposal of high-level nuclear waste. A January 2019 report details the difficulties with high-level nuclear waste management in seven countries (Belgium, France, Japan, Sweden, Finland, the UK and the US) and serves as a useful overview of the serious problems that beset the industry.47,48

The United States has a deep underground repository for long-lived intermediate-level waste, called the Waste Isolation Pilot Plant (WIPP). However the repository was closed from 2014‒17 following a chemical explosion in an underground waste barrel.49 Costs associated with the accident are estimated at over US$2 billion.50 Safety standards fell away sharply within the first decade of operation of the WIPP repository ‒ a sobering reminder of the challenge of safely managing dangerous nuclear waste for millennia.

More Information:

WISE Nuclear Monitor #806, 25 June 2016, 'Nuclear power: No solution to climate change', https://www.wiseinternational.org/nuclear-monitor/806/nuclear-power-no-s...

References:

1. 24 Sept 2019, 'WNISR2019 Assesses Climate Change and the Nuclear Power Option', https://www.worldnuclearreport.org/WNISR2019-Assesses-Climate-Change-and...

2. Lazard, Nov 2018, 'Lazard's Levelized Cost of Energy Analysis ‒ Version 12.0', https://www.lazard.com/media/450784/lazards-levelized-cost-of-energy-ver...

3. REN21, 2019, 'Renewables 2019 Global Status Report', https://www.ren21.net/wp-content/uploads/2019/05/gsr_2019_full_report_en...

4. https://nuclear.foe.org.au/wp-content/uploads/Nuclear-power-economic-cri...

5. Mycle Schneider and Antony Froggatt, Sept 2019, 'World Nuclear Industry Status Report 2019', https://www.worldnuclearreport.org/WNISR2019-Assesses-Climate-Change-and...

6. Jonathan M. Cullen, Julian M. Allwood, Edward H. Borgstein, Jan 2011, 'Reducing Energy Demand: What Are the Practical Limits?', Environ. Sci. Technol., 45,4, https://doi.org/10.1021/es102641n or http://pubs.acs.org/doi/abs/10.1021/es102641n

7. Mycle Schneider and Antony Froggatt, Sept 2019, 'World Nuclear Industry Status Report 2019', https://www.worldnuclearreport.org/WNISR2019-Assesses-Climate-Change-and...

8. https://wiseinternational.org/nuclear-monitor/872-873/smr-economics-over...

9. https://www.csiro.au/~/media/News-releases/2018/renewables-cheapest-new-...

10. https://wiseinternational.org/nuclear-monitor/872-873/smr-cost-estimates...

11. https://wiseinternational.org/nuclear-monitor/872-873/no-one-wants-pay-s...

12. https://www.pnas.org/content/115/28/7184

13. http://www.world-nuclear-news.org/EE-Nuclear-more-competitive-than-fossi...

14. https://wiseinternational.org/nuclear-monitor/872-873/small-modular-reac...

15. https://wiseinternational.org/nuclear-monitor/872-873/nuclear-monitor-87...

16. http://pandora.nla.gov.au/pan/66043/20061201-0000/www.dpmc.gov.au/umpner...

17. https://www.wiseinternational.org/nuclear-monitor/839/nuclear-power-cris...

18. https://www.wiseinternational.org/nuclear-monitor/839/nuclear-lobbyists-...

19. https://www.spglobal.com/platts/en/market-insights/latest-news/electric-...

20. https://www.forbes.com/sites/jeffmcmahon/2012/03/29/exelons-nuclear-guy-...

21. https://www.ft.com/content/60189878-d982-11e1-8529-00144feab49a

22. https://www.theguardian.com/uk-news/2018/jul/10/nuclear-renewables-are-b...

23. http://www.theguardian.com/environment/2016/nov/29/french-nuclear-power-...

24. 'France Focus', World Nuclear Industry Status Report 2019, https://www.worldnuclearreport.org/The-World-Nuclear-Industry-Status-Rep...

26. www.telegraph.co.uk/business/2017/04/01/can-britains-nuclear-ambitions-a...

27. https://www.ft.com/content/db592ce6-7b4e-11e7-9108-edda0bcbc928

28. http://www.forbes.com/sites/jeffmcmahon/2014/12/09/another-giant-declare...

29. https://www.forbes.com/sites/jeffmcmahon/2013/11/10/new-build-nuclear-is...

30. https://www.bloomberg.com/news/articles/2017-02-13/toshiba-s-nuclear-rea...

31. Jim Little, 18 July 2017, 'Nuclear's Fork in the Road', https://www.linkedin.com/pulse/nuclears-fork-road-jim-little

32. https://nuclear.foe.org.au/power-weapons/

33. https://www.wiseinternational.org/nuclear-monitor/804/myth-peaceful-atom

34. Andy Stirling and Phil Johnstone, 23 Oct 2018, ', A global picture of industrial interdependencies between civil and military nuclear infrastructures', Nuclear Monitor #868, https://www.wiseinternational.org/nuclear-monitor/868/global-picture-ind...

35. https://www.wiseinternational.org/nuclear-monitor/850/nuclear-power-weap...

36. https://www.wiseinternational.org/nuclear-monitor/865/nuclear-lobbyist-m...

37. http://grist.org/article/roberts2/

38. https://thebulletin.org/roundtable_entry/we-should-really-worry-about-nu...

39. https://nuclear.foe.org.au/military-and-terrorist-attacks-on-nuclear-pla...

40. https://www.usnews.com/news/national-news/articles/2019-07-01/nuclear-po...

41. https://wiseinternational.org/nuclear-monitor/770/770-24-october-2013

42. John Vidal, 8 Aug 2018, 'What are coastal nuclear power plants doing to address climate threats?', www.ensia.com/features/coastal-nuclear.

43. https://www.usnews.com/news/national-news/articles/2019-07-01/nuclear-po...

44. https://wiseinternational.org/nuclear-monitor/770/how-much-water-does-nu...

45. Aaron Kressig, Logan Byers, Johannes Friedrich, Tianyi Luo and Colin McCormick, 11 April 2018, 'Water Stress Threatens Nearly Half the World's Thermal Power Plant Capacity', https://www.wri.org/blog/2018/04/water-stress-threatens-nearly-half-worl...

46. https://www.ren21.net/reports/global-status-report/

47. Robert Alvarez, Hideyuki Ban, Charles Laponche, Miles Goldstick, Pete Roche and Bertrand Thuillier, Jan 2019, 'Report - The Global Crisis of Nuclear Waste', https://www.greenpeace.fr/report-the-global-crisis-of-nuclear-waste/

48. Section 5 in: Australian environment groups, Sept 2019, Joint submission to the Federal Parliament's Standing Committee on Environment and Energy, 'Inquiry into the prerequisites for nuclear energy in Australia', https://www.aph.gov.au/DocumentStore.ashx?id=9eee9d5f-4362-4b30-b0b8-3b6...

49. https://www.wiseinternational.org/nuclear-monitor/794/wipp-waste-acciden...

50. https://www.latimes.com/nation/la-na-new-mexico-nuclear-dump-20160819-sn...

New report concludes nuclear "will play no meaningful role" in climate change abatement

Nuclear Monitor Issue: 
#870
4766
19/12/2018
Nuclear and Information and Resource Service
Article

Nuclear power is frequently promoted as a necessary solution to global warming, and a key means to achieve emissions goals. This is a major mistake, according to a new report published by the Rosa Luxemburg Stiftung‒New York City. The report ‒ "Nuclear Power and Climate Action: An Assessment for the Future" ‒ presents an industrial analysis of nuclear energy to assess its viability as a climate solution. From real and practical evidence, the report concludes that nuclear power is not a viable tool in the climate solutions toolbox, and that nuclear-free paths to phasing out greenhouse gas emissions are necessary, feasible, and cost-effective.

The report evaluates the technology from all sides: the potential for building new reactors, the prospects for continuing to operate existing reactors, and the commercialization of so-called "advanced reactor designs" in the mid-century timeframe. Analysis shows that nuclear power may not be available in any meaningful capacity by 2050. Existing reactor fleets in most of the world are already reaching the end of their mechanical lives and will mostly phase out within the critical climate timeframe, and strategies to reduce gas reduction must take this into account.

"Those who argue that nuclear power is necessary to reduce GHG emissions are gravely mistaken," said author of the report Tim Judson, Executive Director of the Nuclear and Information and Resource Service (NIRS). "The practical realities about nuclear energy show that it is a failed technology, which is on its way out. We have many more effective and promising tools in the climate action toolbox," continued Judson. "We must not waste time and money on trying to preserve a role for nuclear power, and align energy policies and investments with rapidly transitioning to renewables, efficiency, and carbon-free, nuclear-free climate solutions."

With the immense threats of climate change, it is tempting to overlook other environmental hazards in the effort to address it. That is a mistake with nuclear power especially, because its environmental impacts are so severe and long-lasting and so many of them intersect with and compound impacts of global warming as well as issues of climate justice. At every stage of its production ‒ from uranium mining to the production of radioactive wastes ‒ nuclear power pollutes the environment with some of the most dangerous, long-lived contaminants in the world and places undue stress on water resources.

Because fossil fuels make up 86% of global energy, decarbonization will require a total transformation of energy systems in most parts of the world. Renewable energies have proven to be the most promising option ‒ complemented by investments in energy efficiency, development of complementary technologies, and integrated reliably and resiliently. Evidence from places like Germany and California shows that nuclear power does not integrate well with renewables and phasing it out is likely to create greater opportunities to accelerate the phaseout of fossil fuels and the transformation of the energy system.

The report includes case studies showing that promotion of nuclear power entails significant climate opportunity costs, wasting time and financial investments that could reduce greenhouse gas emissions and decarbonize energy systems much more rapidly and cost-effectively. For instance, in the United States, the Summer 2 and 3 reactors were cancelled after major cost overruns and construction delays bankrupted their manufacturer, after US$9 billion had already been spent. Had utilities invested in energy efficiency and renewables, the report finds, the utilities would have made substantial reductions in emissions and reduced electricity costs for their consumers.

Similarly, the state of New York in the US decided in 2016 to subsidize four aging, uneconomical reactors, at a projected cost of $7.6 billion by 2029 ‒ three times as much as will be spent to achieve 50% renewable energy standard in 2030. Had New York invested in energy efficiency instead of nuclear, it could achieve greater emissions reductions in 2030, at a cost reduction of $10.6 billion.

"The pursuit of nuclear power in South Africa would have permanently locked us into complicity in putting our country as a radioactive waste zone for centuries," said Makoma Lekalakala, Director, Earthlife Africa Johannesburg, and 2018 awardee of the Goldman Environmental Prize for Africa. "By challenging the secret $76 billion agreement between South Africa and Rosatom, we exposed the role of corruption at the highest level of our government. The agreement would have forced South Africans to pay all the costs of a nuclear disaster, contaminated our environment and water with radioactive waste, and made electricity unaffordable for generations," continued Lekalakala. "We have all of the clean, affordable wind and solar energy we need in South Africa, and overturning the nuclear agreement has put us back on track for a healthy, sustainable future, free of fossil fuels."

"The imperatives of rapidly eliminating greenhouse gas emissions demand greater ambition in the implementation of the Paris Agreement," said Kerstin Rudek of Bürgerinitiative Umweltschutz Lüchow-Dannenberg of Germany, on behalf of the international Don't Nuke the Climate Coalition (a global network working to keep nuclear out of the climate agreements ‒ www.dont-nuke-the-climate.org). "Nuclear power has proved too expensive, too slow, and too unreliable to rapidly reduce emissions, and the vast majority of reactors around the world are likely to retire before 2050. A carbon-free, nuclear-free world is possible, but we can't get there by wasting time, money, and political will on failed technologies and false solutions like nuclear power."

The report concludes that the primary obstacles to rapidly phasing out fossil fuels and greenhouse gas emissions are political, not technological or economic. In particular, deceptive interventions by corporations invested in fossil fuels and nuclear energy have engendered inertia and confused the debate by, alternately, denying the reality of global warming and by presenting false solutions. Mitigating the economic and social impacts of climate action by ensuring a just transition for workers and impacted communities is key to charting a clear vision and building and sustaining the political will to accelerate emissions reductions and the phase-out of greenhouse gas emissions.

The report is online: Tim Judson, Nov 2018, 'Nuclear Power and Climate Action: An Assessment for the Future', Rosa Luxemburg Stiftung: New York, www.rosalux-nyc.org/wp-content/files_mf/judson_eng.pdf

An analysis of nuclear greenhouse gas emissions

Nuclear Monitor Issue: 
#853
4688
30/10/2017
Jan Willem Storm van Leeuwen
Article

'Climate change and nuclear power: An analysis of nuclear greenhouse gas emissions' is a new report written by Jan Willem Storm van Leeuwen, commissioned by WISE Amsterdam. The full report is online and the Summary & Findings are reproduced here.

Points at issue

This study assesses the following questions:

  • How large would the present nuclear mitigation share be, assuming that nuclear power does not emit carbon dioxide (CO2)?
  • How large could the reduction become in the future, starting from nuclear generating capacity scenarios published by the IAEA, and also assuming that nuclear power does not emit CO2?
  • How feasible are the projections of the nuclear industry?
  • How large could the actual nuclear CO2 emissions be, estimated on the basis of an independent life-cycle analysis?
  • Does nuclear power also emit other greenhouse gases?

These issues are assessed by means of a physical analysis of the complete industrial system needed to generate electricity from uranium. Economic aspects are left outside the scope of this assessment. Health hazards of nuclear power are also not addressed in this report.

Present nuclear mitigation contribution

The global greenhouse gas (GHG) emissions comprise a number of different gases and sources. Weighted by the global warming potential of the various GHGs, 30% of the emissions were caused by CO2 from the burning of fossil fuels for energy generation. Nuclear power may be considered to displace fossil-fuelled electricity generation. In 2014 the nuclear contribution to the global usable energy supply was 1.6% and the contribution to the emission reduction of nuclear power displacing fossil fuels would be about 4.7%, provided that nuclear power is free of GHGs (which it is not).

Nuclear mitigation contribution in the future

A hypothetical nuclear mitigation contribution in 2050, based on two scenarios of the IAEA and provided that nuclear power is free of GHGs, comes to:

  • IAEA Low scenario (constant nuclear capacity, 376 GWe in 2050): 1.3 ‒ 2.4%
  • IAEA High scenario (constant nuclear mitigation share, 964 GWe in 2050): 3.8 ‒ 6.8%.

The high figures are valid at a growth of global GHG emissions of 2.0%/yr, the low figures at a growth of 3.5%/yr.

Global construction pace

By 2060 nearly all currently operating nuclear power plants (NPPs) will be closed down because they will reach the end of their operational lifetime within that timeframe. The current construction pace of 3‒4 GWe per year is too low to keep the global nuclear capacity flat and consequently the current global nuclear capacity is declining. To keep the global nuclear capacity at the present level the construction pace would have to be doubled.

  • in the IAEA low scenario: 7‒8 GWe per year until 2050.
  • in the IAEA high scenario: 27 GWe/yr until 2050.

In view of the massive cost overruns and construction delays of new NPPs that have plagued the nuclear industry for the past decade, it is not clear how the required high construction rates could be achieved.

Prospects of new advanced nuclear technology

The nuclear industry discusses the implementation within a few decades of advanced nuclear systems that would enable mankind to use nuclear power for hundreds to thousands of years. These concepts concern two main classes of closed-cycle reactor systems: uranium-based systems and thorium-based systems. However, the prospects seem questionable in view of the fact that, after more than 60 years of research and development in several countries (e.g. USA, UK, France, Germany, the former Soviet Union) with investments exceeding €100bn, still not one operating closed-cycle reactor system exists in the world.

Failure of the materialisation of the uranium-plutonium and thorium-uranium breeder systems can be traced back to limitations governed by fundamental laws of nature, particularly the Second Law of thermodynamics. From the above observation it follows that nuclear power in the future would have to rely exclusively on once-through thermal-neutron reactor technology based on natural uranium. As a consequence, the size of the uranium resources will be a restricting factor for the future nuclear power scenarios.

Nuclear generating capacity after 2050

The IAEA scenarios are provided through 2050. Evidently the nuclear future does not end in 2050. On the contrary, it is highly unlikely that the nuclear industry would build 964 GWe of new nuclear capacity by the year 2050 without solid prospects of operating these units for 40-50 years after 2050. How does the nuclear industry imagine development after reaching their milestone in 2050? Further growth, leveling off to a constant capacity, or phase-out?

Uranium demand and resources

The minimum uranium demand in the two IAEA scenarios can be estimated assuming no new nuclear power plants (NPPs) would be built after 2050 and consequently the NPPs operational in 2050 would be phased out by 2100.

The presently known recoverable uranium resources of the world would be adequate to sustain the IAEA Low scenario, but not the IAEA High scenario.

According to a common view within the nuclear industry, more exploration will yield more known resources, and at higher prices more and larger resources of uranium become economically recoverable. In this model uranium resources are virtually inexhaustible.

Energy cliff

Uranium resources as found in the earth's crust have to meet a crucial criterion if they are to be earmarked as energy sources: the extraction from the crust must require less energy than can be generated from the recovered uranium. Physical analysis of uranium recovery processes proves that the amount of energy consumed per kg recovered natural uranium rises exponentially with declining ore grades. No net energy can be generated by the nuclear system as a whole from uranium resources at grades below 200‒100 ppm (0.2-0.1 g U per kg rock); this relationship is called the energy cliff.

Depletion of uranium-for-energy resources is a thermodynamic notion. Apparently the IAEA and the nuclear industry are not aware of this observation. Some resources classified by the IAEA as 'recoverable' fall beyond the thermodynamic boundaries of uranium-for-energy resources.

Actual CO2 emission of nuclear power

A nuclear power plant is not a stand-alone system, it is just the most visible component of a sequence of industrial processes which are indispensable to keep the nuclear power plant operating and to manage the waste in a safe way, processes that are exclusively related to nuclear power. This sequence of industrial activities from cradle to grave is called the nuclear process chain. Nuclear CO2 emission originates from burning fossil fuels and chemical reactions in all processes of the nuclear chain, except the nuclear reactor. By means of the same thermodynamic analysis that revealed the energy cliff, the sum of the CO2 emissions of all processes constituting the nuclear energy system could be estimated at 88‒146 gCO2/kWh. Likely this emission figure will rise with time, as will be explained below.

CO2 trap

The energy consumption and consequently the CO2 emission of the recovery of uranium from the earth's crust strongly depend on the ore grade. In practice the most easily recoverable and richest resources are exploited first, a common practice in mining, because these offer the highest return on investment. As a result the remaining resources have lower grades and uranium recovery becomes more energy-intensive and more CO2-intensive, and consequently the specific CO2 emission of nuclear power rises with time. When the average ore grade approaches 200 ppm, the specific CO2 emission of the nuclear energy system would surpass that of fossil-fuelled electricity generation. This phenomenon is called the CO2 trap.

If no new major high-grade uranium resources are found in the future, nuclear power might lose its low-carbon profile within the lifetime of new nuclear build. The nuclear mitigation share would then drop to zero.

Emission of other greenhouse gases

No data are found in the open literature on the emission of greenhouse gases other than CO2 by the nuclear system, likely such data never have been published. Assessment of the chemical processes required to produce enriched uranium and to fabricate fuel elements for the reactor indicates that substantial emissions of fluorinated and chlorinated gases are unavoidable; some of these gases may be potent greenhouse gases, with global warming potentials thousands of times greater than CO2. It seems inconceivable that nuclear power does not emit other greenhouse gases. Absence of published data does not mean absence of emissions.

Krypton-85, another climate changing gas

Nuclear power stations, spent fuel storage facilities and reprocessing plants discharge substantial amounts of a number of fission products, one of them is krypton-85, a radioactive noble gas. Krypton-85 is a beta emitter and is capable of ionizing the atmosphere, leading to the formation of ozone in the troposphere. Tropospheric ozone is a greenhouse gas, it damages plants, it causes smog and health problems. Due to the ionization of air krypton-85 affects the atmospheric electric properties, which gives rise to unforeseeable effects for weather and climate; the Earth's heat balance and precipitation patterns could be disturbed.

Questionable comparison of nuclear GHG emission figures with renewables

Scientifically sound comparison of nuclear power with renewables is not possible as long as many physical and chemical processes of the nuclear process chain are inaccessible in the open literature, and their unavoidable GHG emissions cannot be assessed.

When the nuclear industry is speaking about its GHG emissions, only CO2 emissions are involved. Erroneously the nuclear industry uses the unit gCO2eq/kWh (gram CO2-equivalent per kilowatt-hour), this unit implies that other greenhouse gases also are included in the emission figures, instead the unit gCO2/kWh (gram CO2 per kilowatt-hour) should be used. The published emission figures of renewables do include all emitted greenhouse gases. In this way the nuclear industry gives an unclear impression of things, comparing apples and oranges.

A second reason why the published emission figures of the nuclear industry are not scientifically comparable to those of renewables is the fact that the nuclear emission figures are based on incomplete analyses of the nuclear process chain. For instance the emissions of construction, operation, maintenance, refurbishment and dismantling, jointly responsible for 70% of nuclear CO2 emissions, are not taken into account. Exactly these components of the process chain are the only contributions to the published GHG emissions of renewables. Solar power and wind power do not consume fuels or other materials for generation of electricity, as nuclear power does.

Energy debt and delayed GHG emissions

Only a minor fraction of the back end processes of the nuclear chain are operational, after more than 60 years of civil nuclear power. The fulfillment of the back end processes involve large-scale industrial activities, requiring massive amounts of energy and high-grade materials. The energy investments of the yet-to-be fulfilled activities can be reliably estimated by a physical analysis of the processes needed to safely handle the radioactive materials generated during the operational lifetime of the nuclear power plant. No advanced technology is required for these processes. The energy bill to keep the latent entropy under control from 60 years nuclear power has still to be paid. The future energy investments required to finish the back end are called the energy debt.

The CO2 emissions coupled to those processes in the future have to be added to the emissions generated during the construction and operation of the NPP if the CO2 intensity of nuclear power were to be compared to that of other energy systems; effectively this is the delayed CO2 emission of nuclear power. Whether the back end processes would also emit other GHGs is unknown, but likely.

Stating that nuclear power is a low-carbon energy system, even lower than renewables such as wind power and solar photovoltaics, seems strange in view of the fact that the CO2 debt built up during the past six decades of nuclear power is still to be paid off.

Jan Willem Storm van Leeuwen, 2017, 'Climate change and nuclear power: An analysis of nuclear greenhouse gas emissions', Amsterdam: World Information Service on Energy (WISE), https://wiseinternational.org/will-nuclear-power-save-climate

Direct download: https://wiseinternational.org/sites/default/files/u93/climatenuclear.pdf

Will nuclear power save the climate ?

• How large would the present nuclear mitigation share be, assumed that nuclear power does not emit carbon dioxide CO2?
• How large could the reduction become in the future, starting from nuclear generating capacity scenarios published by the IAEA, and also assumed that nuclear power does not emit CO2?
• How feasible are the projections of the nuclear industry?
• How large could the actual nuclear CO2 emissions be, estimated on the basis of an independent life cycle analysis?
• Does nuclear power emit also other greenhouse gases?

Nuclear power is not "green energy"

Nuclear Monitor Issue: 
#835
4606
06/12/2016
Arnie Gundersen ‒ chief engineer of Fairewinds Associates.
Article

Starting in 1971, I became a card-carrying member of the "nuclear priesthood." I began as a licensed nuclear reactor operator and progressed through the industry to become a senior vice president. I believed, with religious fervor, that by helping to build and operate atomic power reactors, I would be creating power that was "too cheap to meter." The historic 1973 gasoline shortages and long lines of cars queued at the pumps made it clear to me and hundreds of other nuclear engineers that nuclear power was the only solution to the "energy shortage." In the 1970s and '80s, solving this apparent energy shortage was our only mantra. At that time, there was no scientific data connecting fossil fuels to climate change.

In 1953, President Eisenhower initiated his "Atoms for Peace" program as a means to transform the atom from a scourge into a benefit for mankind and created grand illusions of at least 1,000 US atomic plants by the year 2005. However, well before the 1979 disaster at Three Mile Island, nuclear construction costs were skyrocketing and construction schedules were constantly slipping. The overzealous goal of 1,000 US atomic power reactors dwindled to about 110 finally completed reactors, while more than 120 others that had been on the drawing boards were canceled before producing a single watt of power.1

By 1985, Eisenhower's dream of reclaiming the power of the atom for peaceful purposes had unraveled and had become a nightmare. Electric rates continued to skyrocket2 and ratepayers were left picking up the pieces from Atoms for Peace.

Of the more than 230 attempts to construct atomic power reactors in the United States during the 20th century, only 99 reactors are still operating. Globally, a total of 438 atomic power reactors were still operating in 2015, according to the World Nuclear Association.

During the 20th century, the lights stayed on and the prediction of a dire energy shortage never materialized. Nuclear power's claims that it would be an economic nirvana "too cheap to meter" collapsed as well. Entering the 21st century, renewables began to appear more feasible, so the atomic power industry latched on to NASA's James Hansen's 1988 prognosis of the global buildup in CO2 resulting in global climate change as a new justification for existence. Armed with this new marketing ploy, nuclear power lobbyists flooded Capitol Hill looking for financing to fund the 21st century "nuclear renaissance."

Does the nuclear industry's latest claim that it is the world's salvation from increasing levels of CO2 hold up under scrutiny? No. The evidence clearly shows that building new nuclear power plants will make global warming worse.

A growing carbon footprint

Before we look at the data, two concepts are important to clarify. First, burning a fossil fuel like coal or oil emits CO2.3 The amount of CO2 emitted into the atmosphere each year is massive, measured in gigatons. A single gigaton is one thousand million tons of CO2 gas. The second concept is "ppm," or parts per million. As all this CO2 is dumped into the atmosphere, it is diluted by air. The concentration of CO2 atoms in air is measured in parts (molecules) of CO2 divided by one million air molecules, hence parts per million. In preindustrial times, normal background levels of global CO2 levels were around 280 ppm.4

When the first large commercial nuclear power plant went on line, global emissions of CO2 were about 16 gigatons in 1970 and the concentration of CO2 in the air was about 320 ppm.5 Hansen and 350.org claim that the world's CO2 levels must stay below 350 ppm to avoid catastrophic climate change, a level that was exceeded late in the 1980s.6 By 2015, well after more than 438 heavily subsidized atomic power plants were constructed worldwide, global emissions from burning fossil fuels have reached 36 gigatons. The CO2 concentration in the atmosphere has already exceeded 400 ppm and is increasing by about 2 ppm yearly.

Nuclear power lobbyists and their marketing firms want us to believe that humankind's current CO2 atmospheric releases would have been much worse were it not for those 438 power plants now operating. How much worse? The World Nuclear Association industry trade group estimates that an additional 1.1 gigatons of CO2 would have been created in 2015 if natural gas plants supplied the electricity instead of those 438 nukes.7 Worldwide, all those nuclear power plants made only a 3 percent dent in yearly CO2 production. Put another way, each of the 438 individual nuclear plants contribute less than seven thousandths of one percent to CO2 reduction. That's hardly enough to justify claims that keeping your old local power plant running is necessary to prevent the sea from rising.

Let's fast forward to 2050. Massachusetts Institute of Technology (MIT) estimates that even if the 2015 Paris Accords (COP 21) are implemented and 1,000 new nuclear power plants are constructed, global CO2 emissions will still increase to a minimum of 64 gigatons.8 While this increase appears counterintuitive given the Paris agreement, it is on target because of pent-up energy demands from large populations in India, China, Southeast Asia and Africa who want to achieve the standard of living in western developed countries.

Can new atomic power reactors really help cut CO2 by 2050? Unfortunately, what is past is prologue. The World Nuclear Association claims that 1,000 new nuclear power plants will be needed by 2050 to combat CO2 buildup and climate change.9 The MIT estimate also assumes 1,000 nuclear power plants must be in operation by 2050. Using the nuclear trade association's own calculations shows that these new power plants will offset only 3.9 gigatons of CO2 in 2050; 3.9 gigatons out of 64 gigatons is only 6.1 percent of the total CO2 released to the atmosphere in 2050, hardly enough for the salvation of the polar bears.

If those 1,000 nuclear power plants were cheap and could be built quickly, investing in atomic power reactors might still make sense. However, Lazard Financial Advisory and Asset Management10, with no dog in the fight, has developed a rubric which estimates that the construction cost of those new power plants will be US$8,200,000,000,000.11 Yes, that's US$8.2 trillion to reduce CO2 by only 6 percent.

21st-century opportunities

Surely, that huge amount of money can be better spent on less expensive alternatives to get more bang for the buck. Lazard also estimates that solar or wind would be 80 percent less expensive for the equivalent amount of peak electric output.11

Atmospheric CO2 releases are not going to go on vacation while waiting for those 1,000 plants to be built. According to the World Nuclear Industry Status Report 2016, the average construction time for 46 nuclear plants that began operation between 2006 and 2016 was 10.4 years, not including engineering, licensing and site selection.12

Contrast that with a two-year design and construction schedule for a typical industrial-scale solar power plant.13,14 Atmospheric CO2 levels will increase by almost 70 ppm during the 35 years it will take to construct those 1,000 new nuclear power plants, an increase that they will never eliminate ‒ if they ever operate.

Proponents of nuclear power claim that somehow, sometime in the future, atomic power reactor construction costs will be much lower and construction delays will be a thing of the past. There is no shortage of atomic reactor power ideas, according to the nuclear industry and its lobbyists, when government subsidies are used to fulfill their pipe dreams.

Global climate change is a contemporary problem that requires contemporary solutions. Governments would make the CO2 problem worse by allocating precious resources for nuclear energy to reduce CO2 when the cost of such proposals is unknown and when implementation only begins in 2030. Fortunately, lower-cost renewable solutions are readily available and can be implemented on the necessary time scale needed to reverse the rapidly increasing atmospheric CO2.

Building new nuclear power plants applies a 20th century technology to a 21st century problem. Moreover, building nuclear reactors in a trade-off for CO2 reduction creates a toxic legacy of atomic waste throughout the world. Proponents of nuclear power would have us believe that humankind is smart enough to store nuclear waste for a quarter of a million years, but at the same time, humankind is too ignorant to figure out how to store solar electricity overnight.

Let's not recreate the follies of the 20th century by recycling this atomic technology into the 21st century. The evidence proves that new nuclear power plants will make global climate change worse due to huge costs and delayed implementation periods. Lift the CO2 smoke screen and implement the alternative solutions that are available now ‒ faster to implement and much less expensive.

Copyright, Truthout.org. Reprinted with permission.
www.truth-out.org/news/item/38326-nuclear-power-is-not-green-energy-it-i...

References:

1. http://sustainablog.org/2013/09/us-nuclear-power-in-decline/

2. www.erb.umich.edu/Research/Faculty-Research/LyonMayoRAND.pdf

3. www.epa.gov/ghgemissions/overview-greenhouse-gases

4. www.esrl.noaa.gov/gmd/ccgg/trends/weekly.html

5. www.esrl.noaa.gov/gmd/ccgg/trends/mlo.html

6. www.esrl.noaa.gov/gmd/ccgg/trends/

7. www.world-nuclear.org/nuclear-basics/greenhouse-gas-emissions-avoided.aspx

8. http://globalchange.mit.edu/Outlook2015

9. www.world-nuclear.org/press/press-statements/1000-gigawatts-of-new-nucle...

10. www.lazard.com/our-firm/history/

11. www.lazard.com/media/2390/lazards-levelized-cost-of-energy-analysis-90.pdf

12. www.worldnuclearreport.org/The-World-Nuclear-Industry-Status-Report-2016...

13. https://cleantechnica.com/2012/06/14/watch-the-construction-of-a-10-mw-s...

14. https://cleantechnica.com/2015/07/24/sunpower-build-100-mw-solar-power-p...

Why not nuclear and renewables?

Nuclear Monitor Issue: 
#811
4497
23/09/2015
Dave Elliott − Professor of Technology Policy at the Open University, UK
Article

Nuclear plants do not generate carbon dioxide, so why can't we have nuclear AND renewables, supporting each other, as a response to climate change? In evidence to the UK Energy and Climate Change Select Committee in July, Amber Rudd MP, DECC Secretary of State, suggested that despite its high cost nuclear baseload 'enables us to support more renewables' and was needed since, 'as we all know, until we get storage right, renewables are unreliable'. Can nuclear really support renewables, and is it really low carbon?

The first point to make is that although nuclear plants themselves do not generate CO2, producing the fuel they use does. The mining and fabrication of nuclear fuel is an energy-intense, and hence (at present) carbon-intense, activity and, as demand for this fuel rises, the energy (and carbon) debt will rise since lower grade uranium ores will have to be used, undermining the carbon saving benefits of using nuclear plants.

In theory, nuclear energy or even (perversely) renewables, could be used to power nuclear fuel production so as to avoid this problem but there would still be diminishing returns – there are finite reserves of uranium. Overall, if we attempted to expand the use of nuclear dramatically to deal with climate change, we would exhaust the reserves rapidly unless new more fuel-efficient nuclear plants were developed e.g. fast breeders, and even that would not extend the life of the uranium resource indefinitely.

Nor would it deal with the other problems of nuclear power – safety, security, weapons proliferation and terrorist attack risks, rising costs, inflexible operation and active waste disposal. Indeed it could make them worse. There may be some technical options for limiting some of these problems (e.g. the development of smaller plants, plants using thorium and perhaps recycling some nuclear wastes) but, although there are (strong!) disagreements, some say nuclear fission may not be a significant energy supply option for the future.

Even so, it might be argued that nuclear plants can still prove useful in the interim, before the fuel scarcity problem kicks in, for example to backup variable renewables, as Rudd suggested. For good or ill, in fact it does not seem so. Nuclear plants can't vary their output rapidly or regularly without safety problems. It takes time for the activated xenon gas that is produced when reaction levels are changed to dissipate – it can interfere with proper/safe reactor performance.

In any case nuclear plants need to be run 24/7/365 to recoup their large capital cost. So nuclear plants can just about deal with some of the daily energy demand cycles (demand peaks in the evening, low demand at night) but not with the fast irregular variations likely with wind etc. on the grid – they can't be used to back up the short-term variable output from renewables. It is conceivable that they could be used to cover the occasional longer periods when wind etc. is at minimum. This seems to be what is offered as one option in a new report from the Energy Research Partnership.1 However, that would mean running the plants at lower levels at other times, ready to ramp up slowly to meet the lull periods, which would undermine their economics.

Moreover, if there is a large nuclear contribution and also a large renewables contribution, there can be head-to-head operational conflicts when energy demand is low e.g. at night in summer, when in the UK demand is around 20 GW. The UK is aiming for 16 GW of nuclear by around 2030 and more later (there is talk of 75 GW by 2050) and maybe 30 GW of renewables by around 2020, perhaps more later. Assuming you can't export all the excess, or store it all, which do you turn off when demand is low? The nuclear operators do not want nuclear output to be "curtailed". Neither do the renewable plant operators – they would lose money. It would be a waste either way.

Basically the two technologies are incompatible at large scale on the grid. What you need is one or the other: large, essentially inflexible, nuclear plants with large (very expensive) energy stores to take excess output at low energy demand times, coupled possibly with exporting any excess (as France does) OR a renewables-based system, with a flexible smart grid that balances the variations, using back-up plants (small cheap-to-run gas-fired plants initially, but biomass-fired increasingly), some energy storage (but not much – it is expensive) and demand-side management to reduce/delay peak demand until later. Surplus power at times of low demand can be exported (as with nuclear) and balanced with power imported from overseas if available – the time difference in demand and local variations in wind availability, e.g. across the EU, would help. Having a large inflexible nuclear base-load component on the grid, in such a system, just gets in the way, though a small nuclear component might just about be accommodated.

Basically, in the new system, unless you have a vast energy storage capacity (which would be very expensive), having large base-load plants is a PROBLEM not a solution. The old system, with base-load plus top-up, was OK with large inflexible plant, although wasteful (with huge thermal conversion losses), but if we are to use variable renewables on a large scale we need a more flexible system.

There are some other angles: the surplus power from renewables can be converted into hydrogen gas by electrolysis of water and stored, ready for use in a gas turbine plant to make power when demand is high. Or for use as a vehicle fuel. Germany is already doing this via several wind-to-gas/power-to-gas plants, some of them converting the hydrogen to methane gas, using CO2 captured from the air or from power station exhausts, to feed into the national gas main. It has been argued that if you do happen to have a large, already built, nuclear component (as in France) you could do the same with the excess power from that at night, but that seems to be just a way to sustain the over large nuclear fleet for a bit longer! It would not be economic to build large numbers of new nuclear plants to do this, even if their fuel supply could be guaranteed and low carbon long term. On that last point, interestingly, a new study suggests that using thorium could lead to higher net carbon emissions.2

It is conceivable that nuclear fusion may be viable in the longer term (possibly post 2050). Some say that, rather than being used for base-load, fusion might be used for hydrogen production, in which case it might offer a way to balance variable renewables. However that is very speculative, and fusion is still some way off. Certainly, even if all goes well with the current research work, fusion won't be available in time to deal with the urgent problem of climate change, or to help renewables to do that in the near term.

In terms of the main focus for energy supply, both now and long term, it seems that we really do need to make a choice between nuclear and renewables.

[Reprinted from http://blog.environmentalresearchweb.org/2015/08/22/why-not-nuclear-and-...

References:

1. http://erpuk.org/wp-content/uploads/2015/08/ERP-Flex-Man-Full-Report.pdf

2. www.sciencedirect.com/science/article/pii/S0196890415003957

Nuclear power: No Solution to Climate Change

Nuclear Monitor Issue: 
#806
25/06/2015
Jim Green − Nuclear Monitor editor
Article

(This material is also available as a PDF file.)

SUMMARY

1. Nuclear Power is Not a Silver Bullet

Nuclear power could at most make a modest contribution to climate change abatement. The main limitation is that it is used almost exclusively for electricity generation, which accounts for less than 25% of global greenhouse emissions. Even tripling nuclear power generation would reduce emissions by less than 10% − and then only if the assumption is that it displaces coal.

2. Greenhouse Emissions from the Nuclear Fuel Cycle

Claims that nuclear power is 'greenhouse free' are false. Nuclear power is more greenhouse intensive than most renewable energy sources and energy efficiency measures. Life-cycle greenhouse emissions from nuclear power will increase as relatively high-grade uranium ores are mined out.

3. Nuclear Power – A Slow Response to an Urgent Problem

The nuclear industry does not have the capacity to rapidly expand production as a result of 20 years of stagnation. Limitations include bottlenecks in the reactor manufacturing sector, dwindling and ageing workforces, and the considerable time it takes to build a reactor and to pay back the energy debt from construction.

4. Nuclear Power and Climate Change

Countries and regions with a high reliance on nuclear power also tend to have high greenhouse gas emissions.

Some countries are planning to replace fossil fuel-fired power plants with nuclear power in order to increase fossil fuel exports − in such cases any potential climate change mitigation benefits of nuclear power are lost.

5. Climate Change and Nuclear Hazards

Nuclear power plants are vulnerable to threats which are being exacerbated by climate change. These include dwindling and warming water sources, sea-level rise, storm damage, drought, and jelly-fish swarms.

'Water wars' − in particular, disputes over the allocation of increasingly scarce water resources between power generation and agriculture − are becoming increasingly common and are being exacerbated by climate change

6. Weapons Proliferation and Nuclear Winter

Civil nuclear programs have provided cover for numerous covert weapons programs and an expansion of nuclear power would exacerbate the problem.

Nuclear warfare − even a limited nuclear war involving a tiny fraction of the global arsenal − has the potential to cause catastrophic climate change.

7. Renewables and Energy Efficiency

Global renewable power capacity more than doubled from 2004 to 2014 (and non-hydro renewables grew 8-fold). Over that decade, and the one before it, nuclear power flatlined.

Global renewable capacity (including hydro) is 4.6 times greater than nuclear capacity, and renewable electricity generation more than doubles nuclear generation. A growing body of research demonstrates the potential for renewables to largely supplant fossil fuels for power supply globally.

Energy efficiency and renewables are the Twin Pillars of a clean energy future. A University of Cambridge study concluded that 73% of global energy use could be saved by energy efficiency and conservation measures − making it far easier to achieve a low-carbon, non-nuclear future.

1. NUCLEAR POWER IS NOT A SILVER BULLET

"Saying that nuclear power can solve global warming by itself is way over the top".

-- Senior International Atomic Energy Agency energy analyst Alan McDonald, 2004.[1]

Nuclear power could at most make a modest contribution to climate change abatement. The main limitation is that it is used almost exclusively for electricity generation, which accounts for less than 25% of global (anthropogenic) greenhouse emissions.[2]

Doubling current nuclear capacity would reduce emissions by roughly 6% if nuclear displaced coal[3] − or not at all if nuclear displaced renewables and energy efficiency. Doubling nuclear power generation would require building 437 reactors to add to the 437 existing 'operable' reactors (380 gigawatts). It would also require new reactors to replace shut-down reactors − the International Energy Agency anticipates almost 200 shut downs by 2040.[4]

A 2007 report by the International Panel on Fissile Materials (IPFM) states that if nuclear power grew approximately three-fold to about 1000 GWe in 2050, the increase in global greenhouse emissions projected in business-as-usual scenarios could be reduced by about 10−20% − assuming that nuclear displaced coal.[5] The IPFM scenario (which it does not advocate) assumes a business-as-usual doubling of greenhouse emissions by 2050, with 700 additional reactors reducing emissions from 14 billion metric tons to 13 billion metric tons. Thus the increase in emissions would be reduced by 1/7 or 14% and overall emissions would be reduced by 1/14 or 7% − assuming that nuclear displaces coal.

According to a 2007 article in Progress in Nuclear Energy, a ten-fold increase in nuclear capacity by the end of the century would reduce greenhouse emissions by 15%.[6]

Clearly, nuclear power is not a 'silver bullet'.

2. GREENHOUSE EMISSIONS FROM THE NUCLEAR FUEL CYCLE

Claims that nuclear power is 'greenhouse free' are false. Nuclear power is more greenhouse intensive than most renewable energy sources and energy efficiency measures. Life-cycle greenhouse emissions from nuclear power will increase as relatively high-grade uranium ores are mined out and give way to the mining of lower-grade ores.

Greenhouse emissions arise across the nuclear fuel cycle – uranium mining, milling, conversion, and enrichment; reactor construction, refurbishment and decommissioning; waste management (e.g. reprocessing, and/or encasement in glass or cement); and transportation of uranium, spent fuel, etc.

Academic Benjamin Sovacool wrote in a 2008 paper:

"To provide just a rough estimate of how much equivalent carbon dioxide nuclear plants emit over the course of their lifecycle, a 1,000 MW reactor operating at a 90 percent capacity factor will emit the equivalent of 1,427 tons of carbon dioxide every day, or 522,323 metric tons of carbon dioxide every year. Nuclear facilities were responsible for emitting the equivalent of some 183 million metric tons of carbon dioxide in 2005. Assuming a carbon tax of $24 per ton − nothing too extreme − and that 1,000 MW nuclear plant would have to pay almost $12.6 million per year for its carbon-equivalent emissions. For the global nuclear power industry, this equates to approximately $4.4 billion in carbon taxes per year."[7]

In a ground-breaking study Sovacool screened 103 lifecycle studies of greenhouse emissions from the nuclear fuel cycle to identify the most current, original, and transparent studies.[8] He found that the mean value from those studies was 66 grams of carbon dioxide equivalent per kilowatt-hour (gCO2e/kWh).

Sovacool's paper provides the following figures (gCO2e/kWh):

Wind

9−10

Hydro

10−13

Biogas

11

Solar thermal

13

Biomass

14−31

Solar PV

32

Biomass

35−41

Geothermal

38

Nuclear

66

Natural gas

443

Diesel

778

Heavy oil

778

Coal

960−1050

Sovacool states: "Offshore wind power has less than one-seventh the carbon equivalent emissions of nuclear plants; large-scale hydropower, onshore wind, and biogas, about one-sixth the emissions; small-scale hydroelectric and solar thermal one-fifth. This makes these renewable energy technologies seven-, six-, and five-times more effective on a per kWh basis at fighting climate change. Policymakers would be wise to embrace these more environmentally friendly technologies if they are serious about producing electricity and mitigating climate change."[9]

In a 2009 paper prepared for the Australian Uranium Association, academic Manfred Lenzen concluded that life-cycle greenhouse emissions for nuclear power range from 10−130 gCO2e/kWh with the main variables being ore grades, enrichment technology, reactor fuel re-load frequency and burn-up, and to a lesser extent enrichment level, plant lifetime, load factors, and enrichment tails assay. Lenzen calculates a "worst case" – 0.01% ore grade, 75% load factor, 25 year lifetime, only diffusion enrichment, and a carbon-intensive background economy – resulting in emissions of 248 gCO2e/kWh.[10]

Others calculate still higher values, for example by assuming energy- and emissions-intensive burial of large volumes of low-level ore, waste rock, and mill tailings, rather than the current practice of surface storage.

Life-cycle greenhouse emissions from nuclear power will increase as relatively high-grade uranium ores are mined out. In 2009, mining consultancy firm CRU Group calculated that the average grade of uranium projects at the feasibility study stage around the world was 35% lower than the grades of operating mines, and that exploration projects had average grades 60% below existing operations.[11]

The extent of the increase in the greenhouse intensity of uranium mining is the subject of debate and considerable uncertainty. It depends not only on declining ore grades but also on other variables such as the choice of tailings management options at uranium mines.

Writing in the Journal of Industrial Ecology in 2012, Warner and Heath stated that emissions from the nuclear fuel cycle could increase by 55−220% with declining uranium ore grades.[12]

Academic Dr Mark Diesendorf states: "In the case where high-grade uranium ore is used, CO2 emissions from the nuclear fuel cycle are much less than those of an equivalent gas-fired power station. But the world's reserves of high-grade uranium are very limited and may only last a few decades. The vast majority of the world's uranium is low-grade. CO2 emissions from mining, milling and enrichment of low-grade uranium are substantial, and so total CO2 emissions from the nuclear fuel cycle become greater than or equal to those of a gas-fired power station."[13]

Keith Barnham, Emeritus Professor of Physics at Imperial College London, states that for ore with uranium concentration around 0.01%, the carbon footprint of nuclear electricity could be as high as that of electricity generation from natural gas.[14]

The German Environment Ministry stated in a 2006 report that a modern gas-fired power station in connection with heat production (co-generation) could be less carbon intensive than nuclear power.[15]

Some nuclear lobbyists claim that Generation IV fast neutron reactors would reduce emissions from the nuclear fuel cycle by using waste products (esp. depleted uranium and spent fuel) as fuel instead of mined uranium. One of the problems with that arguments is that Generation IV reactors are − and always have been − decades away:

  • The Generation IV International Forum states: "Depending on their respective degree of technical maturity, the first Generation IV systems are expected to be deployed commercially around 2030−2040."[16]
  • The International Atomic Energy Agency states: "Experts expect that the first Generation IV fast reactor demonstration plants and prototypes will be in operation by 2030 to 2040."[17]
  • A 2015 report by the French government's Institute for Radiological Protection and Nuclear Safety states: "There is still much R&D to be done to develop the Generation IV nuclear reactors, as well as for the fuel cycle and the associated waste management which depends on the system chosen."[18]
  • The World Nuclear Association noted in 2009 that "progress is seen as slow, and several potential designs have been undergoing evaluation on paper for many years."[19]

As for the real-world experience with fast neutron reactors, for the most part they have failed every test including carbon intensity. White elephants such as Japan's Monju reactor and France's Superphenix produced so little electricity that the carbon intensity must have been high. Monju operated for 205 days after it was connected to the grid in August 1995, and a further 45 days in 2010; apart from that it has been shut-down because of a sodium leak and fire in 1996, and a 2010 accident when a 3.3 tonne refuelling machine fell into the reactor vessel.[20] The lifetime load factor of the French Superphenix fast reactor − the ratio of electricity generated compared to the amount that would have been generated if operated continually at full capacity − was just 7% percent, making it one of the worst-performing reactors in history.[21]

3. NUCLEAR POWER – A SLOW RESPONSE TO AN URGENT PROBLEM

Expanding nuclear power is impractical as a short-term response to the need to urgently reduce greenhouse emissions. The industry does not have the capacity to rapidly expand production as a result of 20 years of stagnation. Limitations include bottlenecks in the reactor manufacturing sector, dwindling and ageing workforces, and the considerable time it takes to build a reactor and to pay back the energy debt from construction.

One constraint is the considerable time it takes to build reactors. The World Nuclear Industry Status Report 2014 noted that the average construction time of the last 37 reactors that started up was 10 years; and that at least 49 of the 67 reactors listed as under construction have encountered construction delays.[22]

The development of new reactor types − even those which are just modified versions of conventional reactor technology − further delays the construction and deployment of nuclear power. For example the EPR in Finland is 7−9 years behind schedule, and the EPR in France is five years behind schedule (and counting).[23]

Nuclear power is still slower for countries building their first reactor. The IAEA sets out a phased 'milestone' approach to establishing nuclear power in new countries, lasting from 11−20 years: a pre-project phase 1 (1−3 years), a project decision-making phase (3−7 years) and a construction phase (7−10 years).[24]

The French Nuclear Safety Authority (ASN) says that the initial development of a nuclear power industry requires at least 10−15 years in order to build up skills in safety and control and to develop a regulatory framework − that's 10−15 years even before reactor construction begins. Even with rapid progress, ASN estimates a minimum lead time of 15 years before a new nuclear power plant can be started up in a country that does not already have the required infrastructure.24

In addition to reactor construction, further years elapse before nuclear power has generated as much as energy as was expended in the construction of the reactor. One academic report states: "The energy payback time of nuclear energy is around 6½ years for light water reactors, and 7 years for heavy water reactors, ranging within 5.6–14.1 years, and 6.4–12.4 years, respectively."[25]

By contrast, construction times for renewable energy sources are typically months not years, and likewise the energy pay-back period is typically months not years.

Another constraint is bottlenecks in the reactor manufacturing sector. Sharon Squassoni noted in a 2009 paper:

"A significant expansion will narrow bottlenecks in the global supply chain, which today include ultra-heavy forgings, large manufactured components, engineering, and craft and skilled construction labor. All these constraints are exacerbated by the lack of recent experience in construction and by aging labor forces. Though these may not present problems for limited growth, they will certainly present problems for doubling or tripling reactor capacity."[26]

Another constraint is the pattern of ageing nuclear workforces − the 'silver tsunami'.[27] In the UK, for example, a recent government report says that attrition rates in the ageing nuclear workforce are "high and growing" with more than 8,000 new employees a year needed every year for the next six years if the country's ambitious new-build programme is to succeed.[28] In addition, research and training facilities and courses have been on the decline.

A major expansion of nuclear power is theoretically possible over the medium- to long-term. The depletion of uranium resources could be a constraint. According to the World Nuclear Association, the world's present measured resources of uranium (5.9 Mt) in the cost category around 1.5 times present spot prices, are enough to last for about 90 years at the current usage rate of 66,000 tU/yr.[29]

4. NUCLEAR POWER AND CLIMATE CHANGE

Countries and regions with a high reliance on nuclear power also tend to have high greenhouse gas emissions. For example, the US operates 99 power reactors with a capacity of 98.8 GW (26% of the world total), with nuclear power generating over 19% of its electricity. Yet the US is one of the world's largest greenhouse polluters both in per capita and overall terms.

Some countries are planning to replace fossil fuel-fired power plants with nuclear power in order to increase fossil fuel exports. In such cases any potential climate change mitigation benefits of nuclear power are lost. World Nuclear News reported in 2010 that Venezuela, Russia, and some Middle East countries such as the UAE and Iran would prefer to export oil and gas rather than use them in domestic power plants.[30] Saudi Arabia is another country planning to build nuclear power plants in order to boost fossil fuel exports.[31]

5. CLIMATE CHANGE AND NUCLEAR HAZARDS

Nuclear power plants are vulnerable to threats which are being exacerbated by climate change − discussed in detail in Nuclear Monitor #770.[32]

A 2013 report by the US Department of Energy details many of the interconnections between climate change and energy.[33] These include:

  • Increasing risk of shutdowns at thermoelectric power plants (e.g. coal, gas and nuclear) due to decreased water availability which affects cooling, a requirement for operation;
  • Higher risks to energy infrastructure located along the coasts due to sea level rise, the increasing intensity of storms, and higher storm surge and flooding;
  • Disruption of fuel supplies during severe storms;
  • Power plant disruptions due to drought; and
  • Power lines, transformers and electricity distribution systems face increasing risks of physical damage from the hurricanes, storms and wildfires that are growing more frequent and intense.

At the lower end of the risk spectrum, there are many instances of nuclear plants operating at reduced power or being temporarily shut down due to water shortages or increased water temperature (which can adversely affect reactor cooling and/or cause fish deaths and other problems with the dumping of waste heat in water sources). Reactors in several countries have been forced to close during heat waves, when they're needed the most. For example, France had to purchase power from the UK in 2009 because almost a third of its nuclear generating capacity was lost when it had to cut production to avoid exceeding thermal discharge limits.[34]

At the upper end of the risk spectrum, climate-related threats pose serious risks, such as storms cutting off grid power, leaving nuclear plants reliant on generators for reactor cooling. A 2004 incident in Germany illustrates the risks. Both Biblis reactors (A and B) were in operation when heavy storms knocked out power lines. Because of an incorrectly set electrical switch and a faulty pressure gauge, the Biblis-B turbine did not drop, as designed, from 1,300 to 60 megawatts. Instead the reactor scrammed. When Biblis-B scrammed with its grid power supply already cut off, four emergency diesel generators started. Another emergency supply also started but, because of a switching failure, one of the lines failed to connect. These lines would have been relied upon as a backup to bring emergency power from Biblis-B to Biblis-A if Biblis-A had also been without power. The result was a partial disabling of the emergency power supply from Biblis-B to Biblis-A for about two hours.[35]

'Water wars' will become increasingly common with climate change − in particular, disputes over the allocation of increasingly scarce water resources between power generation and agriculture. Nuclear power reactors consume massive amounts of water − typically 36.3 to 65.4 million litres per reactor per day − primarily for reactor cooling.[36]

Jellyfish swarms have caused problems at many nuclear plants around the world.[37] Increased fishing of jellyfish predators and global warming are contributing to higher jellyfish populations. Monty Graham, co-author of a study on jellyfish blooms published in the Proceedings of the National Academy of Sciences, blames global warming, overfishing, and the nitrification of oceans through fertiliser run-off.[38]

The Union of Concerned Scientists argued in a 2013 report:

"Low-carbon power is not necessarily water-smart. Electricity mixes that emphasise carbon capture and storage for coal plants, nuclear energy, or even water-cooled renewables such as some geothermal, biomass, or concentrating solar could worsen rather than lessen the sector's effects on water. That said, renewables and energy efficiency can be a winning combination. This scenario would be most effective in reducing carbon emissions, pressure on water resources, and electricity bills. Energy efficiency efforts could more than meet growth in demand for electricity in the US, and renewable energy could supply 80% of the remaining demand."[39]

The REN21 'Renewables 2015: Global Status Report' states:[40]

"All energy systems are susceptible to climate variability and extremes. For example, decreasing water levels and droughts can lead to the shutdown of thermal power plants that depend on water-based cooling systems. Dry periods, alternating with floods, can shift erosion and deposition patterns, altering growth rates of biomass and affecting the quality and quantity of the potential fuel output. The melting of glaciers, induced by temperature increases, can have a negative effect on hydropower systems by causing infrastructure damage from flooding and siltation, as well as affecting generation capacity. The efficiency of solar PV declines with high temperatures and dust accumulation, and most of today's wind turbines shut down in winds exceeding 100 to 120 kilometres per hour.

"Typical responses to reducing system vulnerability involve reinforcing existing infrastructure (including strengthening transmission towers and lines); ensuring redundancy of critical systems; building seawalls around power plants; reducing the need for power plant cooling water; and storing larger quantities of fuel at plants. More innovative strategies include local generation and storage, diversification of energy sources, use of a combination of smart grids and technologies, and improving capabilities to couple and decouple individual systems from the central grid system during emergencies.

"Although renewable energy systems are also vulnerable to climate change, they have unique qualities that make them suitable both for reinforcing the resilience of the wider energy infrastructure and for ensuring the provision of energy services under changing climatic conditions. System modularity, distributed deployment, and local availability and diversity of fuel sources − central components of energy system resilience − are key characteristics of most renewable energy systems. Ultimately, renewable energy systems improve the resilience of conventional power systems, both individually and by their collective contribution to a more diversified and distributed asset pool."

6. WEAPONS PROLIFERATION AND NUCLEAR WINTER

Global expansion of nuclear power would inevitably involve the growth and spread of stockpiles of weapons-useable fissile material and the facilities to produce fissile materials (enrichment plants for highly enriched uranium; and reactors and reprocessing plants for plutonium). Global expansion of nuclear power would lead to an increase in the number of 'threshold' or 'breakout' nuclear states which could quickly produce weapons drawing on expertise, facilities and materials from their 'civil' nuclear program.

Former US Vice President Al Gore has neatly summed up the problem: "For eight years in the White House, every weapons-proliferation problem we dealt with was connected to a civilian reactor program. And if we ever got to the point where we wanted to use nuclear reactors to back out a lot of coal ... then we'd have to put them in so many places we'd run that proliferation risk right off the reasonability scale."[41]

Running the proliferation risk off the reasonability scale brings the debate back to climate change − a connection explained by Alan Robock in The Bulletin of the Atomic Scientists:

"As recent work ... has shown, we now understand that the atmospheric effects of a nuclear war would last for at least a decade − more than proving the nuclear winter theory of the 1980s correct. By our calculations, a regional nuclear war between India and Pakistan using less than 0.3% of the current global arsenal would produce climate change unprecedented in recorded human history and global ozone depletion equal in size to the current hole in the ozone, only spread out globally."[42]

Nuclear expansion would also increase the availability of nuclear materials for radioactive 'dirty bombs'. It would also increase the number of potential targets for terrorist attacks or conventional military strikes by nation-states (such as the repeated military strikes and attempted strikes on nuclear sites in the Middle East).

The US National Intelligence Council argued in a 2008 report that the "spread of nuclear technologies and expertise is generating concerns about the potential emergence of new nuclear weapon states and the acquisition of nuclear materials by terrorist groups."[43]

As long ago as 1946, the Acheson-Lilienthal Report commissioned by the US Department of State identified intractable problems:

"We have concluded unanimously that there is no prospect of security against atomic warfare in a system of international agreements to outlaw such weapons controlled only by a system which relies on inspection and similar police-like methods. The reasons supporting this conclusion are not merely technical, but primarily the inseparable political, social, and organizational problems involved in enforcing agreements between nations each free to develop atomic energy but only pledged not to use it for bombs. National rivalries in the development of atomic energy readily convertible to destructive purposes are the heart of the difficulty."[44]

Fissile materials

A May 2015 report written by Zia Mian and Alexander Glaser for the International Panel on Fissile Materials provides details on stockpiles of fissile materials. As of the end of 2013, civilian stockpiles contained 57,070 weapon-equivalents: 61 tons of highly enriched uranium (4,070 weapons), and 267 tons of (separated) plutonium (53,000 weapons).[45] The figures are far greater if plutonium in spent fuel is included.

Harold Feiveson calculates that with an increase in nuclear power capacity to 3,500 GW (compared to 380 GW as of June 2015), about 700 tonnes of plutonium would be produced annually.[46] That amount of plutonium would suffice to build 70,000 nuclear weapons, and if we assume an average 40-year reactor lifespan the accumulated plutonium would suffice to build 2.8 million weapons.

Similarly, the Intergovernmental Panel on Climate Change maps out a scenario whereby nuclear capacity would grow to about 3,300 gigawatts in 2100 and the accumulated plutonium inventory would rise to 50-100 thousand tonnes (IPCC, 1995). That amount of plutonium would suffice to build 5−10 million nuclear weapons.[47]

The challenge is still greater as a result of the practice of plutonium stockpiling. Japan's plutonium stockpiling, for example, clearly fans proliferation risks and tensions in north-east Asia. Diplomatic cables in 1993 and 1994 from US Ambassadors in Tokyo questioned the rationale for the stockpiling of so much plutonium. A 1993 US diplomatic cable posed these questions: "Can Japan expect that if it embarks on a massive plutonium recycling program that Korea and other nations would not press ahead with reprocessing programs? Would not the perception of Japan's being awash in plutonium and possessing leading edge rocket technology create anxiety in the region?"[48]

A 2007 report by the International Panel on Fissile Materials (IPFM) states:

"Even a modest expansion of nuclear power would be accompanied by a substantial increase in the number of countries with nuclear reactors. Some of these countries would likely seek gas-centrifuge uranium-enrichment plants as well. Centrifuge-enrichment plants can be quickly converted to the production of highly enriched uranium for weapons. It is therefore critical to find multinational alternatives to the proliferation of national enrichment plants.

"If a large-scale expansion of nuclear power were accompanied by a shift to reprocessing and plutonium recycle in light-water or fast reactors, it would involve annual flows of separated plutonium on the scale of a thousand metric tons per year − enough for 100,000 nuclear bombs." [49]

7. RENEWABLES AND ENERGY EFFICIENCY

The REN21 'Renewables 2015: Global Status Report' details the striking growth of renewables over the past decade.[50] Renewable energy provided an estimated 19.1% of global final energy consumption in 2013, and growth in capacity and generation continued to expand in 2014. Heating capacity grew at a steady pace, and the production of biofuels for transport increased.

The most rapid growth, and the largest increase in capacity, occurred in the power sector, led by wind, solar PV, and hydropower. Renewables accounted for approximately 59% of net additions to global power capacity in 2014, with significant growth in all regions of the world.

Global renewable power capacity − excluding hydro − grew eight-fold from 85 GW in 2004 to 657 GW in 2014. Solar PV capacity has grown at a phenomenal rate, from 2.6 GW in 2004 to 177 GW in 2014. Over the same period wind power capacity increased from 48 GW to 370 GW.

Global renewable power capacity − including hydro − more than doubled from 800 GW in 2004 to 1,712 GW in 2014 (an estimated 27.7% of the world's power generating capacity in 2014).

In 2014, total installed renewable capacity (including hydro) increased by 8.5%, compared to 0.6% for nuclear power. Hydro capacity rose by 3.6% while other renewables collectively grew nearly 18%.

By way of sharp contrast, nuclear power has flatlined for the past two decades. Nuclear power capacity was 365 GW in 2004 and 376 GW in 2014, and the number of reactors declined from 443 to 439 over that period.[51]

Renewable capacity (including hydro) of 1,712 GW is 4.6 times greater than nuclear capacity of 376 GW.

But the capacity factor of some renewables (e.g. solar PV and wind) is lower than that of nuclear power, so how do the figures stack up when comparing electricity generation? The REN21 report states that as of the end of 2014, renewables (including hydro) supplied an estimated 22.8% of global electricity (hydro 16.6% and other renewables 6.2%). Nuclear power's share of 10.8%[52] is less than half of the electricity generation from renewables − and the gap is widening.

Renewables jobs have also increased dramatically, with more than 7.7 million people now employed in the sector worldwide.

The REN21 report notes that the growth of renewables is being driven by declining costs and that "in many countries renewables are broadly competitive with conventional energy sources." Further, "growth in renewable energy (and energy
efficiency improvements) continues to be tempered by subsidies to fossil fuels and nuclear power, particularly in developing countries."

One final point from the REN21 report warrants mention. The report states: "Despite rising energy use, for the first time in four decades, global carbon emissions associated with energy consumption remained stable in 2014 while the global economy grew; this stabilisation has been attributed to increased penetration of renewable energy and to improvements in energy efficiency."

Deep cuts

Renewables are leaving nuclear power in their wake. But is the growth trajectory of renewables commensurate with the deep cuts in greenhouse emissions required to avert climate change? The short answer is: no.

Could renewables largely supplant fossil fuelled power plants if there was the political will to make the transition happen? Or is an 'all of the above' approach including renewables and nuclear necessary? There is a growing body of research on the potential for renewables to largely or completely supplant fossil fuels for power supply globally.[53]

Of particular interest are:

  • countries with a large number of reactors − only France (58) and the US (99) have more than 50 power reactors;
  • countries with a very heavy reliance on nuclear power (e.g. nuclear supplies around 75% of France's electricity); and
  • countries with very large and growing populations and increasing energy demand (e.g. India and China).

USA: The Nuclear Information & Resource Service maintains a list of reports demonstrating the potential for the US (and Europe) to produce all electricity from renewables.[54]

France: A recent report by ADEME, a French government agency under the Ministries of Ecology and Research, shows that a 100% renewable electricity supply by 2050 in France is feasible and affordable.[55] For an all-renewables scenario, the report proposes an ideal electricity mix: 63% from wind, 17% from solar, 13% from hydro and 7% from renewable thermal sources (including geothermal energy). The report estimates that the electricity production cost (currently averaging 91 euros per MWh) would be 119 euros per megawatt-hour in the all-renewables scenario, compared with a near-identical figure of 117 euros per MWh with a mix of 50% nuclear, 40% renewables, and 10% fossil fuels.

China: A 2015 report by the China National Renewable Energy Centre finds that China could generate 85% of its electricity and 60% of total energy from renewables by 2050.[56]

India: A detailed 2013 report by WWF-India and The Energy and Resources Institute maps out how India could generate as much as 90% of total primary energy from renewables by 2050.[57] The study develops and evaluates a potential growth path involving large deployment of renewables − especially solar, wind and hydro − for electricity generation, with second-generation and algal biofuels meeting the additional demands of the transport sector. It argues that aggressive efficiency improvements also have large potential and could bring in savings of the order of 59% by 2050.

Twin Pillars: Energy efficiency and renewables

A June 2015 report by the International Energy Agency (IEA) compares an 'INDC' scenario, based on 'Intended Nationally Determined Contributions' nominated by (some) countries in advance of the UN climate conference in December 2015, with a more ambitious 'Bridge Scenario'.[58] Energy efficiency does much of the heavy lifting in reducing energy-related greenhouse emissions in the Bridge Scenario compared to the INDC scenario. Energy efficiency accounts for 49% of the reduction by 2030, renewables 17%, upstream methane reductions 15%, fossil-fuel subsidy reform 10%, and reducing inefficient coal 9%.[59]

The IEA report's comments on renewables are worth noting. In the Bridge Scenario, 60% of new power capacity between 2015 and 2030 comes from renewables (23% wind, 17% solar PV, 14% hydro, 6% other renewables) compared to just 6% for nuclear, with fossil fuels accounting for the remaining 34%.[60] In the Bridge Scenario, nuclear accounts for 13% of global power capacity in 2030, almost three times lower than renewables' share of 37% (hydro 18%, wind 9%, solar PV, 4%, bioenergy 4%, geothermal 1%, and concentrated solar power 1%).

In the scenario presented in the International Energy Agency's 'World Energy Outlook 2014', which envisages modest efforts to reduce emissions, oil demand in 2040 would be 22% higher without the cumulative impact of energy efficiency measures, gas demand 17% higher and coal demand 15% higher.[61] The report states: "Beyond cutting energy use, energy efficiency lowers energy bills, improves trade balances and cuts CO2 emissions. Improved energy efficiency compared with today reduces oil and gas import bills for the five largest energy-importing regions by almost $1 trillion in 2040."

The REN21 report notes that renewables and energy efficiency are twin pillars of a sustainable energy future − enabling applications that otherwise might not be technically or economically practical and rendering the outcome greater than the sum of the parts. The report provides examples of the synergies:

  • Synergies for greater system benefits: Efficient building systems and designs, combined with on-site renewable energy generation, reduce end-use energy demand, electrical grid congestion and losses, and the monetary and energy expenditures associated with fuel transportation.
  • Synergies for greater renewable energy share in the energy mix. Improving end-use efficiency and increasing use of on-site renewables reduce primary energy demand. With lower end-use energy requirements, the opportunity increases for renewable energy sources of low energy density to meet full energy-service needs. Targets to increase the share of renewables in total energy consumption can be achieved through both increasing the amount of renewable energy and reducing total energy consumption.
  • Synergies for greater investment in renewables and efficiency. Improvements in end-use energy efficiency reduce the cost of delivering end-use services by renewable energy, and the money saved through efficiency can help finance additional efficiency improvements and/or deployment of renewable energy technologies. These synergies exist across numerous sectors, from buildings and electrical services to transportation and industry.

A 2011 study by University of Cambridge academics concluded that a whopping 73% of global energy use could be saved by practically achievable energy efficiency and conservation measures.[62] Julian Allwood, one of the authors of the study, said: "We think it's pretty unlikely that we'll find a good response to the threat of global warming on the supply side alone. But if we can make a serious reduction in our demand for energy, then all the options look more realistic."[63]

References:

[1] Quoted in Geoffrey Lean, 27 June 2004, Nuclear power 'can't stop climate change', The Independent, www.independent.co.uk/environment/nuclear-power-cant-stop-climate-change...

[2] Electricity plus heat account for 25% of emissions. IPCC, 2014: Summary for Policymakers. In: Climate Change 2014: Mitigation of Climate Change. Contribution of Work­ing Group III to the Fifth Assessment Report of the IPCC, p.9, www.ipcc.ch/pdf/assessment-report/ar5/wg3/ipcc_wg3_ar5_summary-for-polic...

[3] The basis for the calculation is as follows: Ian Hore-Lacey from the World Nuclear Association claims that doubling nuclear power would reduce greenhouse emissions from the power sector by 25%, and the power sector accounts for less than 25% of total emissions. Ian Hore-Lacy, 4 May 2006, 'Nuclear wagon gathers steam', Courier Mail.

[4] International Energy Agency, 2014, 'World Economic Outlook 2014', www.worldenergyoutlook.org

[5] International Panel on Fissile Materials, 2007, 'Global Fissile Material Report 2007', Chapter 7, http://fissilematerials.org/library/gfmr07.pdf

[6] Tae Joon Lee, Kyung Hee Lee, and Keun-Bae Oh, 'Strategic Environments for Nuclear Energy Innovation in the Next Half Century', Progress in Nuclear Energy, Vol. 49 (2007), p.399 (pp.397−408), www.sciencedirect.com/science/article/pii/S0149197007000467.

Cited in Moeed Yusuf, Nov 2008, 'Does Nuclear Energy Have a Future', Boston University, fn.54, www.bu.edu/pardee/files/documents/Pardee-Nuclear-Yusuf.pdf

[7] Benjamin Sovacool, 2008, 'Nuclear power: False climate change prophet?', http://scitizen.com/future-energies/nuclear-power-false-climate-change-p...

[8] Benjamin K. Sovacool, Aug 2008, 'Valuing the Greenhouse Gas Emissions from Nuclear Power: A Critical Survey', Energy Policy 36 (8), pp.2940-2953,

www.sciencedirect.com/science/article/pii/S0301421508001997

www.nirs.org/climate/background/sovacool_nuclear_ghg.pdf

[9] Benjamin K. Sovacool, 11 Dec 2009, 'Nuclear Energy and Renewable Power: Which is the Best Climate Change Mitigation Option', Nuclear Monitor #699,

www.wiseinternational.org/sites/default/files/images/NM699.pdf

[10] Manfred Lenzen, 2009, 'Current state of development of electricity-generating technologies – a literature review', http://web.archive.org/web/20140124203606/http://aua.org.au/Content/Lenz...

[11] CRU Group, 2009, 'Next generation uranium – at what cost?',

http://web.archive.org/web/20101121115919/http://crugroup.com/Documents/...

[12] Ethan S. Warner and Garvin A. Heath, April 2012, 'Life Cycle Greenhouse Gas Emissions of Nuclear Electricity Generation: Systematic Review and Harmonization', Journal of Industrial Ecology, Vol. 16, Issue Supplement s1, pp.S73–S92, http://onlinelibrary.wiley.com/doi/10.1111/j.1530-9290.2012.00472.x/full

[13] Mark Diesendorf, 2005, ABC 'Ask an Expert', www.abc.net.au/science/expert/realexpert/nuclearpower/03.htm

[14] Keith Barnham, 5 Feb 2015, 'False solution: Nuclear power is not 'low carbon'' www.theecologist.org/News/news_analysis/2736691/false_solution_nuclear_p...

[15] German Environment Ministry, March 2006, 'Atomkraft: Ein teurer Irrweg. Die Mythen der Atomwirtschaft'.

[17] Peter Rickwood and Peter Kaiser, 1 March 2013, 'Fast Reactors Provide Sustainable Nuclear Power for "Thousands of Years"', www.iaea.org/newscenter/news/2013/fastreactors.html

[18] Institute for Radiological Protection and Nuclear Safety, 2015, 'Review of Generation IV Nuclear Energy Systems', www.irsn.fr/EN/newsroom/News/Pages/20150427_Generation-IV-nuclear-energy...

[19] World Nuclear Association, 15 Dec 2009, 'Fast moves? Not exactly...', www.world-nuclear-news.org/NN_France_puts_into_future_nuclear_1512091.html

[21] Mycle Schneider, 2009, 'Fast Breeder Reactors in France', Science and Global Security, 17:36–53, www.princeton.edu/sgs/publications/sgs/archive/17-1-Schneider-FBR-France...

[22] World Nuclear Industry Status Report 2014, www.worldnuclearreport.org/-2014-.html

[23] Jim Green and Oliver Tickell, 15 May 2015, 'Finland cancels Olkiluoto 4 nuclear reactor - is the EPR finished?', The Ecologist, www.theecologist.org/News/news_analysis/2859924/finland_cancels_olkiluot...

[24] World Nuclear Association, June 2015, 'Emerging Nuclear Energy Countries', world-nuclear.org/info/Country-Profiles/Others/Emerging-Nuclear-Energy-Countries/

[25] University of Sydney / Integrated Sustainability Analysis, 2006, 'Life-cycle energy balance and greenhouse gas emissions of nuclear energy in Australia', A study undertaken for the Department of Prime Minister and Cabinet of the Australian Government, http://pandora.nla.gov.au/pan/66043/20061201-0000/www.dpmc.gov.au/umpner...

[26] Sharon Squassoni, 2009, 'Nuclear Energy: Rebirth or Resuscitation?', Carnegie Endowment Report, http://carnegieendowment.org/files/nuclear_energy_rebirth_resuscitation.pdf

[27] Sylvia Westall, 29 Nov 2010, 'Nuclear's 'silver tsunami'', www.reuters.com/article/2010/11/29/us-nuclear-ageing-idUSTRE6AS1PQ20101129

[28] HM Government, 2015, 'Sustaining Our Nuclear Skills, www.nsan.co.uk/system/files/Sustaining%20Our%20Nuclear%20Skills%20FINAL.pdf

[29] World Nuclear Association, 8 Oct 2014, 'Supply of Uranium', www.world-nuclear.org/info/Nuclear-Fuel-Cycle/Uranium-Resources/Supply-o...

[30] World Nuclear News, 11 Nov 2010, 'Venezuela puts nuclear over oil', www.world-nuclear-news.org/NN_Venezuelas_puts_nuclear_over_oil_1111101.html

[31] Nick Butler, 7 April 2014, 'The Risks of a Nuclear Saudi Arabia', http://blogs.ft.com/nick-butler/2014/04/07/the-risks-of-a-nuclear-saudi-...

[32] Nuclear Monitor #770, 24 Oct 2013, 'Feature: Water & The Nuclear Fuel Cycle', www.wiseinternational.org/nuclear-monitor/770/770-24-october-2013

[33] Department of Energy, July 2013, 'U.S. Energy Sector Vulnerabilities to Climate Change and Extreme Weather', http://energy.gov/downloads/us-energy-sector-vulnerabilities-climate-cha...

[34] Robert Krier, 15 Aug 2012, 'Extreme Heat, Drought Show Vulnerability of Nuclear Power Plants', InsideClimate News,

http://insideclimatenews.org/news/20120815/nuclear-power-plants-energy-n...

[35] Helmut Hirsch, Oda Becker, Mycle Schneider and Antony Froggatt, April 2005, 'Nuclear Reactor Hazards: Ongoing Dangers of Operating Nuclear Technology in the 21st Century', Report prepared for Greenpeace International, www.greenpeace.org/international/press/reports/nuclearreactorhazards

[36] 'How much water does a nuclear power plant consume?', Nuclear Monitor #770, 24 Oct 2013, www.wiseinternational.org/nuclear-monitor/770/how-much-water-does-nuclea...

[38] Glenda Kwek, 11 July 2011, 'Jellyfish force shutdown of power plants',

www.theage.com.au/environment/jellyfish-force-shutdown-of-power-plants-2...

[39] Union of Concerned Scientists, July 2013, 'Water-Smart Power: Strengthening the U.S. Electricity System in a Warming World', www.ucsusa.org/our-work/energy/our-energy-choices/our-energy-choices-ene...

[40] REN21 (Renewable Energy Policy Network for the 21st Century), 2015, 'Renewables 2015: Global Status Report', www.ren21.net/status-of-renewables/global-status-report

[41] Quoted in David Roberts, 9 May 2006, 'An interview with accidental movie star Al Gore', http://grist.org/article/roberts2/

[42] Alan Robock, 14 Aug 2008, 'We should really worry about nuclear winter', The Bulletin of the Atomic Scientists, http://thebulletin.org/has-time-come-geoengineering/we-should-really-wor...

[43] US National Intelligence Council, 2008, "Global Trends 2025 – a Transformed World", http://web.archive.org/web/20081126005323/http://www.dni.gov/nic/PDF_202...

[44] Acheson-Lilienthal Report, 16 March 1946, 'A Report on the International Control of Atomic Energy', Prepared for the Secretary of State's Committee on Atomic Energy, Department of State, Publication 2498.

[45] Zia Mian and Alexander Glaser, 2015, 'Global Fissile Material Report 2015: Nuclear Weapon and Fissile Material Stockpiles and Production', International Panel on Fissile Materials, http://fissilematerials.org/library/ipfm15.pdf

[46] Harold Feiveson, 2001, 'The Search for Proliferation-Resistant Nuclear Power', The Journal of the Federation of American Scientists, Volume 54, Number 5, www.fas.org/faspir/2001/v54n5/nuclear.htm

[47] Intergovernmental Panel on Climate Change, 1995, 'Climate Change 1995: Impacts, Adaptations and Mitigation of Climate Change: Scientific-Technical Analyses', Contribution of Working Group II to the Second Assessment of the IPCC, R.Watson, M.Zinyowera, R.Moss (eds), Cambridge University Press: UK.

[48] Greenpeace, 1 Sept 1999, "Confidential diplomatic documents reveal U.S. proliferation concerns over Japan's plutonium program", http://web.archive.org/web/20081114064230/http://archive.greenpeace.org/...

[49] International Panel on Fissile Materials, 2007, 'Global Fissile Material Report 2007', Chapter 7, http://fissilematerials.org/library/gfmr07.pdf

[50] REN21 (Renewable Energy Policy Network for the 21st Century), 2015, 'Renewables 2015: Global Status Report', www.ren21.net/status-of-renewables/global-status-report/

[51] International Atomic Energy Agency, 'Nuclear Power Capacity Trend', www.iaea.org/PRIS/WorldStatistics/WorldTrendNuclearPowerCapacity.aspx

[52] Mycle Schneider, April 2015, World Nuclear Industry Status Report, http://static1.1.sqspcdn.com/static/f/356082/26159765/1429631468703/2015...

[53] Mark Z. Jacobson and Mark A. Delucchi, Nov 2009, 'A Plan to Power 100 Percent of the Planet with Renewables', Scientific American,

www.scientificamerican.com/article/a-path-to-sustainable-energy-by-2030/

www.scientificamerican.com/article/powering-a-green-planet/

Mark Z. Jacobson and Mark A. Delucchi, July/August 2013, 'Meeting the world’s energy needs entirely with wind, water, and solar power', Bulletin of the Atomic Scientists 69: pp.30-40, http://thebulletin.org/2013/julyaugust/meeting-world%E2%80%99s-energy-ne...

WWF International, Ecofys and the Office for Metropolitan Architecture, 2011, 'The Energy Report: 100% Renewable Energy by 2050', http://wwf.panda.org/what_we_do/footprint/climate_carbon_energy/energy_s...

Greenpeace International, 'Energy [R]evolution 2012', www.greenpeace.org/international/en/publications/Campaign-reports/Climat...

A number of other useful reports are listed at the following webpages:

http://go100re.net/e-library/studies-and-reports/

www.mng.org.uk/gh/scenarios.htm

http://go100re.net/e-library/studies-and-reports/ (Global, Europe, America, Asia, Pacific, Others)

[54] Nuclear Information & Resource Service, 'Nuclear-Free, Carbon-Free', www.nirs.org/nuclearfreecarbonfree/nuclearfreecarbonfreehome.htm

See also the NIRS 'Alternatives to Nuclear page' resources: www.nirs.org/alternatives/alternativeshome.htm

For European studies see also www.foe.org.au/anti-nuclear/issues/clean-energy/links#3

[55] English language summary: Terje Osmundsen, 20 April 2015, www.energypost.eu/french-government-study-95-renewable-power-mix-cheaper...

Full report (in French): L'Agence de l'Environnement et de la Maîtrise de l'Energie (ADEME), 2015, 'Vers un mix électrique 100% renouvelable en 2050',

www.ademe.fr/sites/default/files/assets/documents/rapport100enr_comite.pdf

http://fr.scribd.com/doc/261245927/le-rapport-100-energies-renouvelables

[57] WWF India and The Energy and Resources Institute, 2013, 'The Energy Report − India 100% Renewable Energy by 2050', www.wwfindia.org/news_facts/?10261

Summary: Emma Fitzpatrick, 17 Jan 2014, 'Even India could reach nearly 100% renewables by 2051', http://reneweconomy.com.au/2014/even-india-could-reach-nearly-100-renewa...

[58] International Energy Agency, June 2015, 'World Energy Outlook Special Report 2015: Energy and Climate Change', www.iea.org/publications/freepublications/publication/weo-2015-special-r...

[59] Ibid., p.74

[60] Ibid., p.155

[61] International Energy Agency, 'World Energy Outlook 2014', www.worldenergyoutlook.org/publications/weo-2014

[62] Jonathan M. Cullen, Julian M. Allwood, and Edward H. Borgstein, Jan 2011, 'Reducing Energy Demand: What Are the Practical Limits?', Environmental Science and Technology, 45 (4), pp 1711–1718, http://pubs.acs.org/doi/abs/10.1021/es102641n

[63] Helen Knight, 26 Jan 2011, 'Efficiency could cut world energy use over 70 per cent', www.newscientist.com/article/dn20037-efficiency-could-cut-world-energy-u...

Don't Nuke the Climate! Launch of a new campaign

Nuclear Monitor Issue: 
#806
25/06/2015
Article

On June 16, seven international clean energy organizations launched a major new campaign aimed at keeping nuclear power out of all negotiations at the upcoming UN climate talks in Paris. The UN Climate Change Conference ('COP-21') will be held in Paris from November 30 to December 11.

The seven initiating groups are the two organisations behind the Nuclear Monitor − the World Information Service on Energy (WISE-Amsterdam) and the Nuclear Information & Resource Service (NIRS) − along with Sortir du Nucleaire (France), Ecodefense (Russia), Global 2000 (Austria), Women in Europe for a Common Future (WECF), and Burgerinitiative Umweltschutz (Germany).

Some of the same groups were critical to a similar effort at the UN negotiations in The Hague in 2000, which succeeded in barring nuclear power from the Kyoto Protocol's Clean Development Mechanism. And some of the groups also organized the large Nuclear-Free, Carbon-Free contingent to last year's People's Climate March in New York City.

Peer de Rijk of WISE-Amsterdam said: "We are calling on 1,000 civil society organisations to join us for a campaign to block the nuclear industry's lobby activities at COP-21 and instead ensure the world chooses clean energy."

Sign the petition! The first step of this new international campaign is a petition that will be presented to world leaders in December.

Organizations can sign the petition at:

www.wiseinternational.org/campaign/sign-petition

Individuals can sign the petition at:

http://tinyurl.com/nonukes-cop21

The text of the petition is available in English French, Spanish, and German.

Join us in Paris. On December 12, groups will organize an anti-nuclear block in the Global Climate March. Buses and trains will bring people to Paris.

www.wiseinternational.org/campaign/march-paris

Danyel Dubreuil from Sortir du Nucléaire said: "The government keeps extending the lifetime of aging reactors and supporting a dirty, expensive, dangerous and declining nuclear industry and will most probably use the COP-21 to try saving its national nuclear industry while promoting it as clean and climate-friendly. We condemn the sponsoring of the COP by polluting companies − and especially by EDF − and will denounce the greenwashing of the nuclear industry in Paris."

International day of actions against nukes. On October 10−11 an international day of action against false solutions will take place in as many countries as possible.

www.wiseinternational.org/international-day-actions-against-nukes

Sascha Gabizon from the global women's network WECF said: "Nuclear power manifests a wide range of human rights violations, from the universal human rights to life and health, to disproportionate impacts on indigenous peoples, women, children, and future generations."

Vladimir Sliviak of Moscow-based Ecodefense said: "Russia has had a catastrophic experience with nuclear power and nuclear waste management. At the same time, the Russian government is increasing its efforts to sell new reactors across the world as safe and climate friendly. This is cynical and irresponsible and must be stopped. There must be a clear statement made in Paris: no nukes; yes to clean energy."

Join the virtual march. You can buy a banner (for as little as 5 euros) which will appear on the campaign homepage (www.wiseinternational.org/campaign). Your donation will be used to finance the Don't Nuke the Climate campaign. The best banner messages will be printed on real banners and taken to the march in Paris.

Websites. NIRS has set up a new 'Don't Nuke the Climate' website for US organizing and actions: www.nirs.org/cop21/dontnuketheclimate.htm

The international campaign website is: www.wiseinternational.org/campaign

Events in Paris

The United Nations Climate Change Conference (COP 21) will be held in Paris from 30 November to 11 December 2015. But that’s not the only thing happening in Paris in those two weeks. Following the attacks in Paris of November 13th, the French government has prohibited mass mobilisation. It is terrible what has happened, but this is not the time to silence the voice of the people. We will be present.
Below a list of the activities the Don’t Nuke the Climate campaign will be offering.

Will the climate be nuked - in Mexico?

Nuclear Monitor Issue: 
#702
6001
15/01/2010
WISE Amsterdam
Article

Ask ten people who attended the climate talks in Copenhagen what the outcome was and you get at least ten different answers. Ask the 50 or so people who were there with a clear anti-nuclear energy focus and the situation is slightly better; maybe 25 different answers. The so-called Copenhagen Accord will be implemented by the parties who have agreed on it. It is not an official agreement of the Conference of the Parties (COP) as such, but rather a side-agreement that has only been "noted" by the Conference. It is only 3 pages long and leaves many questions unanswered.

At the end of two weeks of chaotic negotiations almost all nations accepted the Copenhagen Accord as the best that could come out of it. Just because 4 countries (Venezuela, Bolivia, Sudan and Tuvalu) did not support the text it is not an official UN-agreement.  That does not mean the agreement will not have any effects. One very important and welcomed part of the Accord was the recognition of the scientific view that the increase in global temperature should be below 2 degrees Celsius. This simply means that all countries but the so-called least-developed countries (LDC’s) are bound to take drastic and far-reaching measures to cut emissions of greenhouse-gases.

And then the question of ‘how’ is back on the table. Will nuclear be identified and accepted as tool in the fight against climate change? And if so, will it get financial support from public money via UN-based schemes and mechanisms? Under the current Kyoto-protocol it’s not possible to get (financial) credits by building nuclear power plants, not in your own and not in another country. Although the negotiations in Copenhagen were too far from basic agreements to even come to the detailed discussion on which technologies will be accepted to get support, the nuke-speak was often loudly present in the corridors.

And so was the anti-nuclear movement. With a few actions, both inside and outside the official negotiations venue, with some good programs at the NGO-shadow-conference (well-visited by officials who were locked out of the official venue due to capacity problems) we managed to make our voice heard and make very clear that the global environmental community will - despite being desperate about climate change and the lack of action by political leaders - never accept nuclear energy to be approved as part of the solution.

The Copenhagen Accord also decided that the developed countries will pledge US$ 30 billion for the period 2010 - 2012 to be spent on both adaptation and mitigation in developing countries. And the developed countries “commit to a goal of mobilizing jointly US$ 100 billion dollars a year by 2020 to address the needs of developing countries. This funding will come from a wide variety of sources, public and private, bilateral and multilateral, including alternative sources of finance”….. ”A significant portion of such funding should flow through the Copenhagen Green Climate Fund”.

So the crucial debate will be on which energy-technologies this money will be spent. The Accord is very vague on this. The only agreed-upon language on so-called flexible mechanisms and technology transfer is the following; “In order to enhance action on development and transfer of technology we decide to establish a Technology Mechanism to accelerate technology development and transfer in support of action on adaptation and mitigation that will be guided by a country-driven approach and be based on national circumstances and priorities”.

The decision on how this will work, and how to spend the money, will be taken in Mexico, in December. The ad-hoc umbrella ‘Don’t nuke the climate’ will decide in early spring about its further plans.   

Sources: http://unfccc.int/files/meetings/cop_15/application/pdf/cop15_cph_auv.pdf / www.dont-nuke-the-climate.org
Contact: WISE Amsterdam

About: 
WISE