You are here

nuclear energy

New Swedish government aims for sustainability, nuclear energy in question

Nuclear Monitor Issue: 
#793
4422
30/10/2014
Charly Hultén, WISE Sweden
Article

On September 14, Swedish voters threw out a Right-centrist coalition that had been in power for eight years. The Social Democrats (31.0%) find themselves in a weak coalition with the Greens (6.9%), having chosen to exclude the Left (5.7%) from the government. Green Party leader Åsa Romson is Minister for Climate and the Environment and Deputy Prime Minister.

With less than 40% of the votes in Parliament, the new government faces the prospect of having to negotiate ad hoc majorities from issue to issue. The first hurdle, of course, was reaching agreement within the coalition. Non-socialist commentators touted energy policy as 'Mission Impossible' in this regard, even before the election. But to their – and perhaps even many Social Democrats' – surprise, on October 1 the parties announced that they had reached an agreement.

Up to then, the Greens were very clear on nuclear energy, urging a prompt phase-out – taking as many reactors off-line as possible, as soon as possible. The Social Democrats, however, have been of two minds regarding nuclear. For decades. Especially the party leader, now Prime Minister Stefan Löfven, who formerly headed up Sweden's most powerful union, IF Metall, has been hesitant about any move that might endanger investment in Swedish industry or Swedish jobs. Which, to his mind, a phase-out would do.

Meanwhile, the Social Democratic party congress has taken a stand for sustainability in the energy sector, favoring investment in renewable energy sources and aiming for a phase-out of nuclear when renewables and energy saving measures fill the gap nuclear would leave behind.

The new Social-Democratic Minister for Industry, Mikael Damberg, will head a red-green panel of ministers that will oversee the management of Vattenfall. Damberg has long spoken for the 'sustainability' wing of the party, but in recent weeks he has also characterised Vattenfall's demands on the German government as "reasonable".

The compromise reached between the two parties rests on the "as soon as possible" that unites all three groups, but does not specify either the number of reactors that can be taken off-line or when. Nor does it forbid future 'new build'. What it does contain is this:

  • Nuclear energy shall "assume a greater share of its costs to society".
  • Reactor safety shall be improved – e.g., cooling mechanisms that are independent of the reactor's status – lessons from Fukushima that are being acted out throughout the EU.
  • The surcharge on electricity use, levied to cover the costs of waste management and storage, will be increased (albeit not enough to actually cover costs).
  • State-owned Vattenfall has been instructed to suspend immediately all planning for new nuclear reactors − reputed to have cost well over 100 million SEK (US$13.7m; €10.8m) to date. Instead, the company shall focus on developing renewable energy sources.
  • Alongside energy savings, offshore wind and solar power will be stimulated.

There is no parliamentary majority for phasing out nuclear energy. The new government is using its prerogative as owner of Vattenfall to issue a directive to the company. Vattenfall was the only actor in Sweden that actually had plans for 'new build'. Does this mean The End for nuclear power?

It is the first point above that is open to widely ranging interpretations. Put another way, it means an end to at least some of the de facto subsidies that nuclear power enjoys. But how far-reaching is the goal? Does it mean, for example, that reactor operators will have to take out liability insurance, like any other risky business? At present they do not.

The compromise has been applauded for its political sophistication. Other than the directive to Vattenfall, there is no fiat, no explicit prohibition of either R&D or investment in nuclear reactors. The 'how many' and 'when' is left to two extraparliamentary insitutions: the market, on the one hand, and a new Energy Commission, to be composed of major energy users, providers, authorities and politicians, that will be asked to discuss Sweden's path toward sustainability in the energy sector after 2020.

The principal motive for convening the Energy Commission is the PM's desire to assure the long-term stability of the new energy policy. Uncertainty has been perceived to be the Number One threat to the health of the economy, and a major deterrent to investments in energy saving technologies and a shift to renewable sources.

The glut

The truth is that Swedish nuclear energy is no longer the 'cash cow' that it once was. Sweden produces more electricity that it can use, and the export market is not what it used to be. The glut has depressed prices. The expected expansion of renewables, in combination with energy saving technologies, has dampened enthusiasm for investment in nuclear energy. Just when an ageing reactor park requires massive investment.

Some weeks before the election, Mikael Odenberg, CEO for Svenska Kraftnät (the state-owned power distribution utility), published his view, that there is currently no rational basis for investing in new nuclear capacity. Then, only days before the election, Oskarshamns Kraftgrupp (OKG) reported an operating loss of 2.5 billion krona (US$343m; €271m) for their two oldest reactors over the past two years. (Two additional reactors at Ringhals are equally small and old, but their owner, Vattenfall, has not publicly discussed their profitability.)

As for the proposed Energy Commission, the Prime Minister has stated the government's "position at entry" into the discussions: "Nuclear power will be replaced by renewable energy sources and energy savings." The immediate reaction from the most pro-nuclear parties and organisations has been one of shock. Vattenfall's new CEO among them. Energy-intensive industry and IF Metall are up in arms − but will no doubt take part in the discussions once their shock subsides. The Liberal Party leader complains that the outcome of the talks has already been decided and seems disinclined to take part. But the smaller former coalition parties are still in 'campaign mode'. Hopefully, they will get back down to the business of Parliament soon.

So, the situation at present is not entirely clear. The new government has signalled a change of course in the energy sector. Sustainability is the goal. But how long it will take to get the ship on course remains to be seen. The composition of the Energy Commission and its members' willingness to think outside their accustomed boxes will be decisive.

Energy Commission

In connection with the publication of a comprehensive progress report on the attainment of Sweden's sustainability goals, Erik Brandsma, Director-General of the Swedish Energy Agency, urges broad participation in the planned Energy Commission. In Dagens Industri on October 2, Brandsma wrote:

"As for the attainment of our goals, here is where we will stand in 2020:

  • The goal of 50% renewable energy: We'll be at 55%.
  • The goal of 10% renewable energy in the transport sector: It will actually be 26%, thanks to the use of bio-fuel additives.
  • The goal of 20% lower energy intensity (energy efficiency measures) since 2008: 19%, but the figure is sensitive to GNP growth and the possible shutdown of a nuclear power reactor before 2020.
  • The goal of 40% less CO2-emissions (since 1990) – we'll reach this goal, too, with the help of emissions reductions of 40 million tons outside Sweden's borders. ...

"Energy is decisive for our competitive strength and quality of life. The challenges will come after 2020. But to ensure that we can meet these challenges we need, now, to engage in a constructuve dialogue on energy systems of the future. We need to move on from a for-or-against debate over individual energy sources [a reference to the bitter legacy of Sweden's referendum on nuclear energy in 1980] and instead consider the whole.

"'The whole' implies a program of action that tackles energy efficiency, energy production, storage and distribution (the grid). And all this in an international context. Different groups having an interest in energy – industry, interest groups and politicians – have a lot of ideas about "what others should do", and they voice these ideas in seminars, studies and articles in the media. Now it is time for a constructive dialogue, in which all the participants shoulder a responsibility.

"A new Energy Commission may be a good vehicle for such a discussion. We have the data, but facts and documentation mean nothing unless they are used in constructive dialogue. We all have a common goal: a sustainable energy system for Sweden. This means competitive strength, security and minimal impacts on human beings, the environment and the climate."

Swedish Radiation Safety Authority: Second-rate safety good enough for old reactors

After the multiple meltdowns at Fukushima Dai-ichi in 2011, nuclear safety authorities throughout Europe have reviewed nuclear power plants' ability to withstand "extreme external conditions". In Sweden, the Radiation Safety Authority (SSM) has focused particularly on the need to have independent core cooling systems, i.e., systems that can supply cooling water to the core when existing cooling systems fail and the electricity supply has been cut off. The systems shall have a capacity to operate at least 72 hours and be designed to operate under highly improbable, up to one-in-a-million, conditions. So far, so good.

A memorandum circulated to operators on October 9 requires fully functional independent systems to have been installed in every reactor by 2017. But the memorandum also notes that, in the interval to 2020, SSM will accept so-called "intermediate solutions" which, they admit, may not provide the same level of safety as mandated. They mention mobile on-site backup systemsequipment that can be moved between reactors as needed – as one such solution. (Advantage: they are cheaper. The main drawbacks are three: the time it takes to get them on-site and set up, whether they can be moved under emergency conditions; and they can only serve one reactor at a time.)

Ironically, SSM finds such second-rate solutions appropriate for reactors that have been in operation longer than they were designed to be and may be expected to be taken offline "shortly after 2020".

This assessment drew immediate fire from Greenpeace Sweden. The organisation has long studied the problems of over-age reactors, and the statistics clearly show aged reactors to be risky business. Sweden has four reactors that are 40+ − two at Oskarshamn, two at Ringhals.

Rather than trying to save reactor owners' money, Greenpeace argues, the regulator should focus on safety. If their owners don't think the old reactors are worth the expense, maybe it's time to shut them down. Moreover, Greenpeace continues, the determination violates the Environmental Code, which requires use of "best available technology" in all aspects of nuclear safety. It is this last point that may well force SSM to think again.

Nuclear News

Nuclear Monitor Issue: 
#785
24/04/2014
Article

From WISE/NIRS Nuclear Monitor #785, 24 April 2014

To subscribe to Nuclear Monitor, click here.

US NRC issues uranium license on Lakota Indian land

On April 8, the US Nuclear Regulatory Commission (NRC) issued an operating license to the Powertech Uranium Corp for its proposed in-situ leach (ISL) uranium mine in the Black Hills region of South Dakota. The move came four months ahead of a public hearing scheduled to hear from opponents of the project. The proposed mine still needs final approval from the South Dakota Board of Minerals and Environment, the South Dakota Water Management Board, and the US Environmental Protection Agency before it can began operations.

At least eight other uranium companies are known to be targeting the Black Hills. Lilias Jarding of the Black Hills Clean Water Alliance told The Ecologist: "We're afraid that if this project goes through ... we'll end up with a ring of uranium mines around the Black Hills.

Activists say that Powertech is working to minimise oversight of its operations. In 2011, Powertech secured the passage of legislation effectively barring South Dakota's Department of Environment and Natural Resources from regulating ISL projects, leaving the state with direct oversight only of water-use and waste-disposal issues. The company has also defeated several measures aimed at increasing oversight, including, a bill that would have required Powertech to demonstrate its ability to restore groundwater quality before opening the new mine.

Over a period of two decades beginning in the early 1950s, about a thousand open-cut uranium mines were opened in and around the Black Hills region. The last mine closed in 1973, but the region remains littered with radioactive debris.

He Sapa, the Black Hills, is a sacred site to the Lakota and numerous other Western Tribes who have long gone to the area for ceremony, hunting game, harvesting medicines and for spiritual renewal. Despite the 1980 Supreme Court ruling in United States v. Sioux Nation, that ruled the US illegally stole the Black Hills from the Lakota, the government has refused to return the lands to the Lakota and it remains a continued central source of conflict between the Lakota and the U.S. government.

The proposed uranium mine is opposed by Indian groups, ranchers, environmentalists and the Rapid City Council. Debra White Plume, an Oglala Lakota activist, said: "We're all standing together. This ain't just a handful of little Indians out on the prairies that you can run over ... this is a broad array of resistance to uranium mining. If they close every door to us, then the only door open to us is direct action. You've got to walk through that door if you're serious about protecting yourself and Mother Earth."

Lakota activists fought off a similar uranium-mining project in 2007, and Debra White Plume says she's determined to see off Powertech.

http://lastrealindians.com/u-s-nuclear-regulatory-commission-issues-uran...

www.theecologist.org/News/news_analysis/2299391/protect_our_sacred_water...

More information:
The Black Hills Clean Water Alliance www.sdcleanwateralliance.org/
Defenders of the Black Hills www.defendblackhills.org/
Dakota Rural Action http://dakotarural.org/

Protecting against insider nuclear threats

Matthew Bunn and Scott Sagan have written a useful paper on insider nuclear threats − 'A Worst Practices Guide to Insider Threats: Lessons from Past Mistakes'. The paper is part of a larger project on insider threats under the Global Nuclear Future project of the American Academy of Arts and Sciences.

A recent example was the apparent insider sabotage of a diesel generator at the San Onofre nuclear plant in the United States in 2012; the most spectacular was a 1982 incident in which an insider placed explosives directly on the steel pressure vessel head of a nuclear reactor in South Africa and detonated them − thankfully the plant had yet to begin operating. All known thefts of plutonium or highly enriched uranium appear to have been perpetrated by insiders or with the help of insiders. Similarly, most of the sabotage incidents that have occurred at nuclear facilities were perpetrated by insiders.

Bunn and Sagan look at past disasters caused by insiders and draw from them 10 lessons about what not to do. The lessons are as follows:

#1: Don't assume that serious insider problems are NIMO (Not In My Organization)

#2: Don't assume that background checks will solve the insider problem

#3: Don't assume that red flags will be read properly

#4: Don't assume that insider conspiracies are impossible

#5: Don't rely on single protection measures

#6: Don't assume that organizational culture and employee disgruntlement don't matter

#7: Don't forget that insiders may know about security measures and how to work around them

#8: Don't assume that security rules are followed

#9: Don't assume that only consciously malicious insider actions matter

#10: Don't focus only on prevention and miss opportunities for mitigation

Matthew Bunn and Scott Sagan, April 2014, 'A Worst Practices Guide to Insider Threats: Lessons from Past Mistakes', Occasional Paper, American Academy of Arts & Sciences,

www.amacad.org/content/publications/publication.aspx?d=1425

Small reactor prospects diminishing

World Nuclear News reported on April 14 that Babcock & Wilcox will slash its spending on the 'mPower' small modular reactor project, having failed to find customers or investors. B&W's mPower design was prioritised for deployment under a five-year cost-matching agreement with the US Department of Energy (DoE), and with the Tennessee Valley Authority (TVA) named as the lead customer. The three of them supplied a budget of US$150 million [€109m] per year to develop mPower, hoping to build the first unit by 2022. Six units had been pencilled in for TVA's Clinch River site at Oak Ridge, Tennessee.

With the DoE arrangement now one year old, B&W hoped to have secured a number of utility customers for the small reactor as well as investors keen to take a majority share in its development. Spokesperson Aimee Mills said: "There was interest from customers and interest from investors, but none have signed on the dotted line." B&W President E. James Ferland said: "While we have made notable progress in developing a world-class technology, there is still significant work involved in bringing this climate-friendly technology to reality."

B&W has decided to reduce its spending on mPower to a maximum of US$15 million [€10.9m] per year and has begun negotiating with TVA and the DoE to find a workable way to restructure and continue the project.

POWER Magazine notes that "air seems to be leaking out of the SMR balloon lately." In February, Westinghouse announced it would end its 225 MWe Small Modular Reactor project, after a decade of development and many millions of dollars of investment. Westinghouse failed to secure R&D funding from the DoE. CEO Danny Roderick said" "The problem I have with SMRs is not the technology, it's not the deployment − it's that there's no customers."

In the US, DoE-subsidised R&D continues into the 45 MWe NuScale reactor concept. Elsewhere in the world, construction is underway on the 27 MWe CAREM reactor in Argentina, though claims that small reactors will reduce costs are looking increasingly fanciful − the CAREM reactor equates to US$17.84 billion (€13.0 billion) per 1000 MWe. Work continues on two 105 MWe HTR units at Shidaowan in China; and in Russia, plans are in train for a floating nuclear power plant with two 35 MWe reactors mounted on a barge.

www.world-nuclear-news.org/C-Funding-for-mPower-reduced-1404141.html

www.babcock.com/news-room/Pages/BW-Announces-Restructuring-of-Small-Modu...

www.powermag.com/worldwide-nuclear-commerce-good-news-and-bad-news/

Rio Tinto under fire

The Labour Resource and Research Institute and Earthlife Namibia have released a report on the health of workers at Rio Tinto's Rössing uranium mine in Namibia.1 The report was produced as part of the project Environmental Justice Organisations, Liabilities and Trade (www.ejolt.org). The study is based on 44 questionnaires carried out with current and former mine workers. The recommendations are:

* Rio Tinto should perform a large-scale epidemiology study with independent medical experts to examine those workers who started working in the 1970s or early 1980s.

* The Ministry of Health and Social Services must get unrestricted access to all medical reports of all workers employed by Rössing.

* All mine workers should be able to have access to their own medical reports.

Historically, the Rössing mine supplied uranium for US and UK nuclear weapons. Workers faced dangerous conditions, poor regulations, and high levels of dust. During the early years of operation, Rössing operated with a migrant labor system which the International Commission of Jurists declared illegal and said was similar to slavery.

The Rössing mine was in the news last year because of the December 3 collapse of one of the 12 leach tanks in the mine's processing plant. Just days later, a similar spill occurred at Rio Tinto's Ranger uranium mine in the Northern Territory of Australia.

The company is also being criticised for failing to guarantee the rehabilitation of Ranger unless its plans to expand operations at the site are approved. The latest annual report of Energy Resources of Australia (majority owned by Rio Tinto) states that "... if the Ranger 3 Deeps mine is not developed, in the absence of any other successful development, ERA may require an additional source of funding to fully fund the rehabilitation of the Ranger Project Area."2 And at Rio Tinto's London AGM on April 15, executive Sam Walsh distanced the parent company from responsibility for rehabilitation, saying: "This is a public Australian company and clearly that is an issue for them."

Justin O'Brien from the Gundjeihmi Aboriginal Corporation, which represents the Mirarr Traditional Owners, said: "The attitude of Rio and ERA demonstrates little has changed in the more than three decades since Galarrwuy Yunupingu described talks over the Ranger mine as 'like negotiating with a gun to my head'. The mining giants have made enormous profits at the expense of Mirarr traditional lands and are now holding the Word Heritage listed area to ransom. It is inconceivably thoughtless and arrogant of any mining company to manage its corporate social responsibilities in this way and regrettably brings to mind the comment made by Mirarr Senior Traditional Owner Yvonne Margarula in 2003: 'The promises never last, but the problems always do'."2

Dave Sweeney from the Australian Conservation Foundation said: "Only hours after the complete collapse of the tank ERA − owned by the UK based mining giant Rio Tinto − released a statement high on bravado but low on evidence claiming all contaminants had been contained and that 'there is no impact to the environment'. This predictable and premature assurance highlighted ERA's desire to at least retain control over its perception, if not its pollution. A subsequent site review commissioned by ERA recently confirmed the long held concerns of many stakeholders that the aging plant is at full stretch and raised serious questions about the adequacy of both infrastructure and management systems at Ranger, finding that the mine had 35 other failed or at risk pieces of critical plant infrastructure or equipment with the potential for major human safety or environmental impacts in operation at the time of the tank collapse. The report recommended that processing not resume processing until these items have been repaired or retired while a further 48 critical assets were recommended to be serviced, repaired or retired within 6-12 months of any future plant restart."3

On the day of the London AGM, IndustriALL Global Union released a report, 'Unsustainable: The Ugly Truth about Rio Tinto', highlighting the multinational's global practices.4 The report exposes Rio Tinto's poor performance in relation to environmental, economic, social and governance issues. Workers from numerous countries staged a protest outside the AGM. Kemal Özkan, assistant general secretary of IndustriALL, said: "Rio Tinto's blind pursuit of profit at any cost has caused disputes with numerous unions as well as environmental, community and indigenous groups. IndustriALL has launched a campaign working with civil society organizations to defend against Rio Tinto's abuses. Through demonstrating that Rio Tinto does not operate in a sustainable manner, we aim to force the company to live by its own claims."4

1. Bertchen Kohrs and Patrick Kafuka, April 2014, 'Study on low-level radiation of Rio Tinto's Rössing Uranium mine workers',

www.criirad.org/mines-uranium/namibie/riotinto-rossing-workers-EARTHLIFE...

2. www.mirarr.net/media_releases/held-to-ransom-rio-tinto-s-radioactive-leg...

3. www.onlineopinion.com.au/view.asp?article=16200&page=0

4. www.industriall-union.org/exposing-the-uggly-truth-about-rio-tinto

Eroding nuclear safeguards

The April 16 edition of Canada's 'Embassy' newspaper discusses the gradual erosion of safeguards requirements associated with uranium exports.1 Previously, Canada required that nuclear material exported to China could only be held in facilities in China named in a 'Voluntary Offer' list that Beijing had agreed to with the International Atomic Energy Agency (IAEA). Such facilities can be inspected by the IAEA − albeit the case that IAEA inspections in nuclear weapons states are few and far between.

Under Canada's revised policy, uranium oxide can be (and has been) exported to a conversion plant in China that has not been placed on the Voluntary Offer list. Instead, if material is transferred to a facility that is not on the IAEA list, an "administrative arrangement" kicks in, requiring China to "provide additional reporting to Canada on the uranium." But the administrative arrangement, and others like it, "are considered protected documents and are not available publicly" according to the Canadian Nuclear Safety Commission.

Shawn-Patrick Stensil from Greenpeace Canada drew a parallel with Canada's nuclear exports to India: "We've now been moving to selling uranium to markets that have bomb programs, and our non-proliferation policy is dying a death by a thousand cuts. I think this will eventually come back to bite us."

Reuters reported on April 14 that the US, UK, Czech Republic and the Netherlands submitted a paper to a meeting of the Nuclear Suppliers Group (NSG) calling on the NSG − a voluntary, 48-country group − to relax its rules to allow nuclear exports to countries such as Israel.2 The paper, seen by Reuters, is a masterpiece of obfuscation. Instead of talking about nuclear exports (to a nuclear weapons state outside the Nuclear Non-Proliferation Treaty), it talks about "facilitated export arrangements".

And this is the indecipherable rationale for weakening nuclear export norms: "With technology progressing at an ever increasing rate, globalised supply chains, and more and more countries developing nuclear and dual use capabilities, the possibility of trade in nuclear related goods between governments not participating in the NSG is becoming more and more likely. ... In order to stay ahead of the curve, the NSG's goals − to control the export of nuclear sensitive goods − might be best served by an open-minded approach aimed at cooperation with non-NSG members and promoting transparency of the NSG guidelines."

A former Israeli nuclear official told Reuters that Israel for years had tried to get the NSG to recognise it as a so-called adherent country "on the strength of the justified truth that Israel is a responsible state", but a number of NSG member states have objected.

There is an ongoing push from the US, UK and others to include India as a member of the NSG. India was granted a "clean waiver" by the NSG in 2008, an important step towards opening up nuclear trade despite India's status as a rogue nuclear weapons states that refuses to sign the NPT or the Comprehensive Test Ban Treaty and is expanding its nuclear weapons arsenal.

Islamabad is also lobbying to be included in the NSG and for an end to prohibitions on nuclear trade with Pakistan.3 China is already using the US−India precedent to expand nuclear exports to Pakistan.

1. www.embassynews.ca/news/2014/04/16/canada-knew-nuclear-deal-with-china-c...

2. www.reuters.com/article/2014/04/14/us-nuclear-trade-israel-idUSBREA3D0T3...

3. http://tribune.com.pk/story/686790/pakistan-looking-forward-to-cooperati...

Kazakhstan nuclear company head arrested for corruption

Valery Shevelyov, the executive director of Kazakhstan's major uranium producer and nuclear-fuel cycle operator KazAtomProm, was arrested on April 1 on corruption charges. An investigation regarding the construction of new KazAtomProm facilities named Shevelyov as a suspect in the embezzling US$710 million [€514m], according to Kazakh State Anti-corruption Agency. Shevelyov's predecessor Muhtar Dzhakishev has been in prison since 2009 on similar charges.

www.worldbulletin.net/world/132602/kazakhstan-nuclear-company-head-arres...

European Parliament calls for action on depleted uranium

The European Parliament has called on the EU's Council of Ministers to ensure that all member states support an upcoming UN General Assembly resolution on depleted uranium (DU). The resolution will be tabled in October. Each year the European Parliament provides recommendations to the EU's Council of Ministers on positions that EU member states should take during voting. This year the parliament has called on member states to develop a common EU position that better reflects the overwhelming and repeated calls by the parliament for a global moratorium on the weapons.

At present the EU is split on the topic, with DU users the UK and France opposed during UN votes − two of only four states worldwide to oppose the resolutions, along with the US and Israel − while the rest of the EU votes in favour or abstains. While the number of EU states abstaining each time has been decreasing, continued abstentions by the likes of Sweden and Denmark have been a source of frustration for national campaigns. Globally, 155 states supported the most recent UN resolution on DU in 2012, and the split position within the EU is something of an anomaly in the face of an emerging global consensus.

www.bandepleteduranium.org/en/european-parliament-unga-recommendations

www.theecologist.org/News/news_analysis/2355834/european_parliament_dema...

Renewable energy potential in Europe

An analysis for Greenpeace suggests that it is possible to get 77% of Europe's electricity from renewable sources by 2030 with the help of smart grids, demand management, gas backup and big changes in how the power grid works. The model suggests that by taking a European approach (rather than planning by country) and using a (relatively) new type of power cable the cost of integrating new renewables into the grid can be significantly cut. The report suggests that by 2030 Europe's grid will be able to absorb a renewable share of 77% with some countries, such as Spain, getting all their power from renewable sources. The UK would be on 70%. Around half of Europe's power (53%) would come from wind and solar PV panels.

www.greenpeace.org.uk/newsdesk/energy/analysis/report-how-can-you-build-...

Nuclear-free Austria stops import of nuclear electricity

Nuclear Monitor Issue: 
#750
4240
01/06/2012
Reinhard Uhrig
Article

Austria’s people decided in a national referendum in 1978 against the start-up of the nuclear power plant in Zwentendorf, which resulted in a constitutional law (Bundesverfassungsgesetz Atomfreies Österreich, 1998). On the other hand, Austrian utilities recently imported large amounts of “dirty” electricity, in particular from the Czech Republic as well as from Germany – including at least 5 % of nuclear electricity.

Electricity in the EU can be traded separately from its guarantee of origin. On the first impression, this system sounds complicated as it makes the process of trading much more complex (issue of certificate, trading of certificate and cancellation of certificate as well as de-labelling the original source of the certificate). On second thoughts the system is simply not working – the general idea of electricity certificates was that by making certificates (guarantees of origin) tradeable separately from the electricity itself, extra revenue would be generated for renewable electricity and hence the investment in renewable energy sources would be supported. As the experiences with renewable electricity certificate systems show not just in the EU, but also in the US, there is no noticeable extra support for “new renewables” through this system, rather customers who are willing to pay a premium buy the renewable parts of the electricity mix, and in particular industry customers buy just anything they can get cheap, including nuclear electricity (as long as it is still heavily subsidized). Electricity certificates are mostly issued for renewable sources, but also for nuclear and fossil generation.

We started off from the position of thinking that electricity certificate systems in general are a stupid and not functioning system, but as there is no major overhaul to the system on the EU-level in sight, we thought it better to reform the system (on a national level) than to carry on lamenting, at the same time closing the worst loophole in the electricity certificate law for the import of nuclear electricity:

Legal aspects of (nuclear) electricity certificates
The Renewables Directive of the EU (2009/28/EC) defines in Article 15 that electricity certificates can be traded separately from the electricity itself. The Electricity Internal Market Directive (2009/28/EC) regulates in Chapter II, Article 9 consumers’ rights for fuel mix disclosure – it is the right of customers to know what sources of electricity they consume (and hence pay for / support).

There is, however, a major snag to this: as electricity can be traded separately from its certificate, electricity bought from an electricity exchange does not as such have a certificate / guarantee of origin with it. (The electricity exchanges account for small amounts of total trade, in the case of the German exchange 17 %, in the case of the Austrian exchange 7 % – most electricity is traded in direct, Over The Counter (OTC)-contracts.)

For electricity bought from the exchanges, the Electricity Internal Market Directive allows suppliers to use aggregated figures for the electricity exchange – an average value, an assumption about the average mix rather than precise figures. This of course contradicts the right of customers for full disclosure of fuel sources.

On the national level of the member states, it got worse: The Austrian Electricity law (Elektrizitätswirtschafts- und Organisationsgesetz 2010) provided in § 79.3 a major loophole for hiding unwanted amounts of electricity: If suppliers were unable (or unwilling) to purchase certificates for electricity, as is the case of electricity bought from the electricity exchanges without buying accompanying certificates, the suppliers could still sell this electricity and label it according to average European values, assumed from data for the previous year / statistics of the European Transmission System Operators (excluding electricity generated from renewable sources, as it was rightly assumed that this would not be sold at the electricity exchanges, but rather for a premium in direct Over The Counter-contracts).

The situation in Austria
With the advent of electricity market reform, Austrian utilities exported more and more “green” electricity (or green electricity certificates) to countries where consumers were willing to pay a premium for this – and selling electricity generated from fossil, nuclear or unknown sources to the Austrian industry (that consumes 57 % of electricity).

Most recent data (2010) show that 14,7 % of Austria's total electricity consumption was either bought from the electricity exchanges without any electricity certificate, or its certificate was sold separately (mostly hydro certificates to Germany). There was no legal requirement for suppliers to provide electricity certificates for all electricity, amounts without certificate were simply called "Strom unbekannter Herkunft" (electricity with unknown origin) in § 79.3 of the Electricity law.

This meant that traders could easily hide the fossil and nuclear parts of their fuel mix behind the smokescreen of "Strom unbekannter Herkunft" – they could even buy electricity from known (dirty) sources, sell it at the exchange and buy it back – whereby it lost its certificate.

The campaign
GLOBAL 2000 and Greenpeace CEE had been campaigning on this issue / “hidden” nuclear electricity in Austria for years. When the majority state-controlled utility “Verbund” started a massive advertising campaign in 2010 positioning itself as “100 % hydro”, GLOBAL 2000 started a campaign outlining that a 100 % subsidiary of Verbund sold almost entirely dirty electricity to the industry. After the Fukushima-events in March 2011, the campaign gained momentum and the Austrian government, eager to demonstrate change, agreed to ban nuclear electricity at a first summit with the two NGOs in June 2011. Quite predictably, some utilities opposed these moves, so the NGOs had to provide detailed legal and financial expertise that a) the proposed legal changes are sound on basis of European and WTO law and b) electricity prices would not skyrocket – the average price increase for labelling all electricity in Austria without nuclear certificates would be in a very modest range from € 0.13–1.95 per average household per year.

We were lobbying for a legally binding prohibition to import nuclear electricity or certificates, but this stalled as the ministry of economics was fiercely opposed to this: The minister argued this would be an infringement to Art 34 TFEU (Treaty of the Functioning of the European Union, Free movement of goods) – we argued: yes it would, but this can be justified by Art 194.2 TFEU – the right of member states of the EU to choose their energy sources, that came into force with the Lisbon treaties.

The NGO campaign was backed by Austrian anti-nuclear initiatives, the Austrian Chamber of Labour and the major tabloid in Austria, Kronenzeitung – this helped a lot. When finally even the Catholic Church (in the person of the Klagenfurt bishop) signalled that nuclear electricity imports should be stopped, on April 16th we finally managed to achieve at least a compromise as follows:

Results
1) Labelling: legally binding obligation for disclosure of all electricity that is consumed in Austria -- this includes households and industry as well as pumped-storage hydro (which consumes large amounts of electricity in Austria). The legal changes to the national electricity law will make it mandatory that the entire electricity supplied is labelled, i. e. that electricity can only be sold together with an electricity certificate, and “Strom unbekannter Herkunft” is not applicable any more for fuel disclosure. These changes to § 79.3 are to be drafted this year and come into force by 2015.

2) Nuclear certificates & electricity: Austrian utilities voluntarily exclude certificates and direct contracts from nuclear generation from their portfolio immediately (it would be economic suicide to market explicitly labelled nuclear electricity in Austria anyway). Österreichs Energie (representing the largest utilities in Austria) also agreed that on a voluntary basis they will already start labelling their entire electricity supply by 1.1.2013 for household consumers and the – much larger amounts – for industry by 1.1.2015.

3) Label: there will be a certification label by the (federal) Issuing Body E-Control, developed together with the NGOs, that guarantees that the utility does not use any nuclear electricity or nuclear electricity certificates.

4) Transit: as electricity labelling is consumer/disclosure-oriented, the proposed changes do not affect the transit of electricity through Austria.

Regarding electricity certificates: The Austrian issuing body only acknowledges four types of electricity certificates, three national certificates under RES-law and one international – the EECS-GO (European Energy Certificate System-Guarantee of Origin), where the issuing body is nominated by the state and conforms to fairly tight rules (to prevent double counting of certificates). This excludes systems (RECS, TÜV, ...) that are not as strict, are set up by market players or cannot exclude double counting, which of course immediately perverts the entire system.

The above is a compromise, but a reliable disclosure of all electricity sources is a big victory for the campaign. Lots of people were involved in this campaign, on the NGO-side Friends of the Earth Austria/GLOBAL 2000 & Greenpeace CEE as well as the ÖKOBÜRO legal experts.

If – as we hope – this campaign can be copied to other European countries, full disclosure can give consumers more power in choosing the clean electricity sources they want to consume – and avoiding the ones they do not wish to pay for any more, namely nuclear electricity.

Source and contact: Reinhard Uhrig, anti-nuclear campaigner, GLOBAL 2000 / Friends of the Earth Austria. Neustiftgasse 36, 1070 Wien, Austria
Tel: +43 699 14 2000 18
Mail: reinhard.uhrig[at]global2000.at

About: 
Global 2000

Stop import of nuclear electricity from Russia

Nuclear Monitor Issue: 
#750
4241
31/05/2012
Green World
Article

Russian and Norwegian environmental NGOs oppose increased electricity trade between Russia and western countries, as long as common environmental and safety standards are absent. They urge the Finnish government to stop future import of nuclear electricity from the new Leningrad Nuclear Power Plant-2 (LNPP-2) in Russia. This import will be facilitated by the new power cable between Sosnovy Bor (St. Petersburg region, Russia) and Vyborg (Russia).

The Russian company JSC Edinaya Energeticheskaya Sistema (Unified Energy System of Russia), in cooperation with the State Corporation on Nuclear Energy (Rosatom), is laying an underwater 1000 MW power cable from the  new Leningrad nuclear reactor -2 (LNPP-2, under construction) on the south shore of the Gulf of Finland, to a point south of the city of Vyborg on the north shore. A public hearing of the environmental impact assessment (EIA) of the cable project was held in Sosnovy Bor in December 2011.

The cable will have a capacity of 1000 MW, and is capable of transporting electricity directly from 1 out of 4 units of VVER-1200 nuclear reactors of the New Leningrad NPP-2. The cable will bypass the limitations in the transmission lines around St Petersburg, and allow a more direct access to the international electricity market via Finland.  In the last years Russian-Finnish transfer of electricity has been about 10-11 TWh/year. This is about the equivalent of the electricity production of the 2 oldest Chernobyl type reactors of Leningrad NPP. These reactors have received a license for the prolonged operation after reaching their 30 years design limit. This political decision was adopted without public participation and EIA.

The High Voltage Direct Current power link-project will decrease environmental safety in the Baltic part of Russia by promoting the prolongation of old and unsafe nuclear reactors and the accumulation of nuclear and radioactive waste on the coastline of our common Baltic Sea. It will lead to environmental dumping, due to lower safety and environmental standards in Russia.

The transport of nuclear electricity is not solely a bilateral decision between Russia and Finland. Also other Nordic and EU countries will be influenced, as electricity imported to Finland will reach the common Nordic and EU market.

1. The new cable leads to environmental dumping

- Electricity import from Russia represents the dumping of cheaper electricity produced with lower environmental and safety standards, on the Nordic market.
Northwest Russia has excess electric generating capacity because of prolonged operation of the first generation nuclear reactors. The reactors have not only passed their 30 year of designed lifetime, but they are also built with serious safety design deficits that make it impossible to meet European safety standards. For instance, EU told Lithuania to close down Ignalina nuclear power plant for safety reasons, although its reactors were newer and better than the two oldest reactors at Leningrad Nuclear Power Plant.  

- A common market should have common standards.
EU’s position in the energy dialogue with Russia has been that a common EU and Russia electricity market should have common environmental standards. Therefore EU has shown reluctance to import Russian electricity before environmental and safety conditions are improved. As members of EU, Finland should not act in a way that contradicts this position. 

- Environmental dumping is bad both for the environment and for competition.
The prolonged operation of Russia’s first generation nuclear power reactors will decrease the level of environmental safety in the whole Baltic Region populated by more than 90 million people. In addition to harming the environment by decreasing the level of environmental safety, different standards in the same market is unfair competition.

2. The new cable helps prolongation of old and unsafe nuclear reactors

- Electricity import provides money for the Russian nuclear industry.
Russia’s nuclear operator RosEnergoAtom is one of the companies that will receive increased income from the electricity export. Earning money from electricity export, the operator of the old reactors will be more likely to continue operation. Even though there is surplus capacity of electricity generation in North West Russia, old nuclear reactors that have reached the end of their planned lifetime have received permission for prolongation of operations. This is done without public debate or necessary environmental impact assessments (EIA).

- Electricity import from Russia results in prolongation of old reactors.
Thus the proposed cable will decrease the level of environmental safety in the whole Baltic Region populated by more than 90 million people.

- Electricity import makes the work for decommissioning even more difficult.
Environmental NGOs in Russia work for decommissioning of old reactors, but face a tough challenge in today’s Russia, where organisational freedom is limited. The court system is also not working in our favour. Electricity import from Russia will counteract their efforts.

- The Russian courts have denied the right of NGOs to stop unlawful lifetime extension
Russian NGOs have attempted to use the legal system to stop the unlawful lifetime extension of the old reactors at the Leningrad nuclear power plant, but the effort has not been successful. The courts have so far blocked any discussion of this problem with Russian NPP operators and regulators of nuclear safety.

- Setting conditions for electricity import is a way to help decommissioning.
The Nordic countries, EBRD (The European Bank of Reconstruction and Development) and others have given financial and technical support for safety measures at the old reactors, on the condition that they close at the end of their designed lifetime. Nevertheless, RosEnergoAtom has chosen to prolong their operation. By unconditionally buying the power from RosEnergoAtom, the Nordic countries undermine their own possibilities for actual influence on Russian authorities on this issue. 

NGO's involved in this campaign are Green World, Sosnovy Bor, Kola Environmental Center, Murmansk, Za Priodu, Chelyabinsk and Norges Naturvernforbund / FOE Norway, Oslo.

Source and contact: Green World, Sosnovy Bor, St. Petersburg region, Russia
Tel: +7 921 74 52 631
Email: Bodrov[at]greenworld.org.ru

Energy security for what? For whom?

Nuclear Monitor Issue: 
#743
6237
05/03/2012
The Corner House
Article

Nuclear power is necessary for the energy security of nations, nuclear advocates often declare. But many people who hear the term “energy security” are rightly suspicious of the word “security”. It seems to mean so many things. What kind of security is being talked about? Whose security? Over what time scale? Does “energy security” mean having secure contracts to buy fossil fuels or uranium? Being able to project military force to defend trading routes? Protecting vulnerable centralized energy systems against guerrilla attacks? Or does it mean having enough heat in the winter? Or reducing demand? Or developing renewable energy?

A newly report written by Nicholas Hildyard, Larry Lohmann and Sarah Sexton and published by the Corner House, called "Energy security for what? For whom?" tries to explores the pitfalls of “energy security” as rhetoric and as policy.

Energy is never far from the headlines these days. Conflicts of all kinds – political, economic, social, military – seem to be proliferating over oil, coal, gas, nuclear and biomass. While some interests struggle to keep cheap fossil fuels circulating worldwide, a growing number of communities are resisting their extraction and use. While an increasingly urbanized populace experiences fuel poverty and many people in rural areas have no access whatsoever to electricity, large commercial enterprises enjoy subsidized supplies. As increasingly globalized manufacturing and transport systems spew out ever more carbon dioxide, environmentalists warn that the current era of profligate use of coal, oil and gas is a historical anomaly that has to come to an end as soon as possible, and that neither nuclear energy, agrofuels or renewables (even supposing they could be delivered in an environmentally sustainable and safe manner) will ever constitute effective substitutes for them. For progressive activists, all this raises an unavoidable yet unresolved question: how to keep fossil fuels and uranium in the ground and agrofuels off the land in a way that does not inflict suffering on millions? What analytic and political tools are available to formulate democratic policies regarding “energy” that reflect these realities?

Mainstream policy responses to such issues are largely framed in terms of “energy security”. The focus is on “securing” new and continued supplies of oil, coal and gas, building nuclear plants and even translating renewables into a massive export system; energy efficiency is accorded a lower priority, but transition away from fossil fuels is nowhere to be seen at all. Climate change objectives, though once at the forefront of policy responses, are increasingly relegated as concerns about “keeping the lights on” predominate.

Yet, instead of making energy supplies more secure, such policies are triggering a cascade of new insecurities for millions of people – whether as a result of the everyday violence that frequently accompanies the development of frontier oil and gas reserves, or because the pursuit of “energy security” through market-based policies denies many people access to the energy produced. Indeed, the more that the term “energy security” is invoked, the less clear it is just what is being “secured”.

Like many other political buzzwords, “energy security” has become a plastic phrase used by a range of different interest groups to signify many often contradictory goals. For many individuals, energy security may simply mean being able to afford heating in the depths of a cold winter or having access to a means of cooking – a “logic of subsistence”. For political parties in government, it may mean ensuring that a nation’s most important corporations have reliable contracts with guaranteed fuel suppliers until the next election. For exporting countries, it may mean making certain that their customers maintain their demand for their oil or gas via long-term contracts.

The multiple meanings of “energy security” have become an obstacle to clear thinking and good policymaking. They are also an open invitation for deception and demagoguery, making it easy for politicians and their advisers to use fear to push regressive, militaristic social and environmental programs:

“Energy security is a concept notorious for its vague and slippery nature, no less so because it is bound to mean different things at different times to different actors within the international energy system.” (*1)

This multi-faceted nature makes it difficult, if not impossible, to come up with a definition that is accepted by all, which is hardly surprising given that no single term can capture realities on the ground involving different histories and materialities.

Both the word “energy” and the word “security” have in fact become so detached from their vernacular meaning that they are themselves problems. “Energy”, usually treated today as an abstract concept from physics, makes no distinction among energies derived from wood, muscles, coal, oil, gas, nuclear materials, falling water or moving air. It ignores the diversity of things that different groups want energy for – cooking food for your family? extracting more surplus from workers? – and the different types of political struggle connected with each. It hides the different ways in which energies are bought and sold, and the differing politics of class, race, gender and nation that characterize each energy source. Measuring “energy” and “energy sources” cannot by itself help decide which types, amounts or uses of energy are more important for humanity’s future. It may even get in the way. “Security” is just as problematic. “What kind of “security”? For whom? Which kinds of security are connected with which energy sources? What kinds of strategies are required for each kind of security? How do they conflict or overlap? The word abstracts from all these questions.

By concealing differences and conflicts that have to be acknowledged and brought out into the open, it hinders effective, democratic policymaking related to agriculture, electricity, trade, aid, transport, manufacturing, housing, banking, national development and the role of the military in society.

This Corner House report explores the pitfalls of “energy security” as rhetoric and as policy. Instead of illuminating possible ways forward, the phrase (and the policies that are framed by it) obscures increasing inequality, diverts attention from the need to slow global warming and nurtures underlying conflicts. In sum, it gets in the way of effective discussion about, and organization for, a democratic, fossil-free future. A critical examination is needed to find ways to talk about poverty, climate and other issues connected with “energy” that are more coherent and analytically fruitful as well as better attuned to progressive goals. Putting the collective security and survival of all above the individual short term gain of a few, and acknowledging the deep political, economic, social – and even psychological – entrenchment of today’s locked-in dependence on coal, oil and gas, it would be wise to start now to make transitions in how we produce and transport food and goods – how we live and organize our livelihoods, societies and economies around the world.

*1. Paul Isbell, “Security of Supply”, Oxford Energy Forum, Issue 71, November 2007, pp.3-6 [p.3].

"Energy security for what? For whom?" is published on 16 February 2012, by The Corner House in collaboration with Hnuti DUHA– Friends of the Earth Czech Republic, CEE Bankwatch Network, Les Amis de la Terre-Friends of the Earth France, Campagna per la riforma della Banca Mondiale and urgewald e.V..

It is available at: http://dev.thecornerhouse.org.uk/resource/energy-security-whom-what

Source and contact: The Corner House, Station Road, Sturminster Newton, Dorset DT10 1BB, UK.
Tel: +44 1258 473795
Email: enquiries[at]thecornerhouse.org.uk
Web: http://www.thecornerhouse.org.uk

Prospects for nuclear power in 2012

Nuclear Monitor Issue: 
#742
6231
17/02/2012
Platts Energy Economist
Article

A surprisingly pessimistic view about the prospects of nuclear energy has been published by Platts, traditionally very close to the nuclear industry, with magazines like Nuclear Fuel and Nucleonics Week. Platts concludes episodic nuclear disasters, like Fukushima, aren't the only challenges to the nuclear industry's future: The industry faces a number of hurdles including financing and new safe-technology construction.

Even before the Fukushima disaster, the long-awaited nuclear renaissance in the West seemed to be running out of steam. There were two main factors behind this failure; the new Generation III+ reactors produced to take account of the lessons of Chernobyl that would spearhead the revival were not living up to their promises, and, more importantly, banks were proving unwilling to provide finance.

The key markets for the renaissance were the US and the UK. As pioneers of nuclear power, potentially large markets and countries that seemed to have abandoned plans for new nuclear plants, a successful revival in these countries would have been a powerful endorsement for these new technologies. Following on, the expected reversal of nuclear phase-outs in Germany and Italy would have provided two more large, high-prestige markets.

These follow-on markets are now clearly off the agenda. However, the US and UK governments seem oblivious to the idea that Fukushima might have any implications for new build plants. The incentives in terms of loan guarantees in the US and long-term Power Purchase Agreements at non-market prices in the UK are still in place. Government commitment appears undiminished.

Yet turning a blind eye to Fukushima is clearly not sustainable. The hope that the disaster can be written off as having relevance only to earthquake and tsunami prone countries with Mark 1 Boiling Water Reactors is no more credible than the hope that Chernobyl would have relevance only to a particular Soviet design operated in an inexplicable way.

Gen III+ claims
The nuclear industry would probably like to forget the claims it made for Generation III+ designs. In short, Gen III+ reactors would achieve the dream combination of being both safer and simpler, making them cheaper and easier to build. The expected overnight (excluding finance charges) construction cost was forecast to be no more than $1,000/kW so that a typical 1,500 MW nuclear power plant would cost $1.5 billion. This was much less than the few plants completed in the  1990s and, not by coincidence, a figure that meant power from new nuclear reactors would be competitive with power from gas-fired plants.

However, the $1,000/kW promise quickly began to unravel when the first order for a Gen III+ design, Olkiluoto in Finland, was priced in 2004 at more than double that level. Construction of the European Pressurized Reactor supplied by French company Areva and its only successor so far in the West, Flamanville in France, has descended into farce. Both plants are now five years over their expected construction time and the latest cost estimates are about double the level forecast at construction start. Most recent serious cost estimates and bids in the past few years for Gen III+ designs have been of the order of $6,000/kW.

However, finance is only partly about build cost. The main issue is risk and comes from the poor record of nuclear plants being built to time and cost, a reputation only worsened by Olkiluoto and Flamanville. The banks have signalled that they are unwilling to bear this risk, leaving three sets of interests that might be able to take it on: the utilities, the vendor or the consumer in some form via the state.

In the past, nuclear power plants have been built with the assumption that consumers would bear the risk because electricity tariffs would recover whatever costs were incurred. When US regulators became unwilling to pass on all these costs in the late 1970s, under pressure from the financial community, ordering there came to an abrupt halt and many plants already ordered and under construction were abandoned. A decade later, as competitive electricity markets began to replace monopolies in Western Europe, nuclear mainly ceased to be a financeable option there too. Although Finland is part of a competitive electricity market, Olkiluoto was fully insulated from it by PPAs lasting the life-time of the plant priced at whatever costs were incurred. Similarly, while France is theoretically an open electricity market, EDF, the builder of Flamanville, remains a de facto monopoly supplier.

The attempted US revival dating back to 2002 was based on shifting the risk from the banks to taxpayers by granting loan guarantees for nuclear projects. Even in today's economic situation, sovereign debt is good enough to convince most banks to lend, allowing borrowing at not much more than base rate. However, there are other problems with loan guarantees in addition to the likely reluctance of vendor countries to add to their debts.

First, according to international agreements, there should be a premium on the loan cost, either a fee or a higher interest rate that reflects this risk. If the size of this premium accurately reflects the risk, logically, the cost of this premium should be the same as if the private sector was taking the risk. So if loan guarantees are economically priced, they may offer no financial advantage. Second, if the project does go wrong and costs escalate, the utility will have to go to the market to borrow more money to support a failing project, a situation unlikely to impress shareholders. The possibility that the plant vendor will shoulder the risk no longer exists following Olkiluoto. When the project started to go badly wrong, Areva quickly refused to honor its 'turnkey' contract and the issue of who will pay the extra billions of euro costs will be settled in a court of arbitration. No vendor is now likely to offer a turnkey contract and, even if they did, banks are unlikely to place any value on such a contract.

This brings the issue of shifting the risk from the banks back to convincing consumers that they must bear the risk. The most likely project in the US to go ahead, the Vogtle project for two AP1000 reactors supplied by Toshiba/Westinghouse is in a state (Georgia) where the regulator is already allowing cost recovery even before the start of serious construction. The other project with a reasonable chance of success, the Summer project, also for two AP1000s, is also in a state (South Carolina) with a compliant regulator. It is unlikely there will be many more states with regulators willing and able to commit consumers to repay all the costs, especially if things go wrong at these sites. The two US projects that were in states with competitive electricity markets were quickly abandoned.

In the UK, despite the political rhetoric that a new nuclear program would receive no public subsidies, what is now likely to be on offer are Feed-in-Tariffs and longterm Contracts for Differences. These effectively ensure that all power from nuclear plants is guaranteed to be sold at a predictable price set outside the market.

EDF is the most likely developer in the UK. Whether it will go ahead with an EPR in the UK is likely to depend on whether the design can survive the problems at Olkiluoto and Flamanville and on how fully the CfDs are guaranteed to cover costs. Since the terms of these contracts will be regarded as commercially sensitive, the public will never know what it has signed up to. But, if construction goes ahead, it can be assumed strong cost-recovery guarantees are in place. How the European Commission will view such contracts, which are blatantly unfair state aid and therefore presumably illegal, remains to be seen.

BRICs + South Korea
China has dominated new nuclear plant orders in the past few years, accounting for 25 out of the 38 reactors on which construction started worldwide between 2008-2010. Six of these units were for Gen III+ designs, four AP1000s and two EPRs. Almost all the others used a design imported from France in the 1980s, which in turn had been licensed from Westinghouse in the early 1970s. This design, the CPR1000, is showing its age and there was an expectation, even before Fukushima, that the AP1000 would replace it. This would have been a huge boost to the AP1000, giving it the volume of orders that might have allowed costs to come down and for teething problems to be solved. The EPR, by contrast, appears to have no prospect of further orders in China.

However, there were signs that the strain of the rapid pace of construction was beginning to show. In 2011, no new starts were made, compared with ten in 2010. Fukusima explains this to a degree, but some might have been expected in the first three months of 2011 before disaster struck. The reason behind the slowdown is the high cost of the AP1000. The large Chinese utilities appear to be looking at other options.

There is now talk of pursuing indigenous advanced designs developed from the CPR1000 as well as Small Modular Reactors. China has always been adept at convincing nuclear suppliers that there was a great future for their particular technology in China. It is unclear whether talk of SMRs and new advanced designs will go any further. China is looking much less committed to nuclear power than it was a year ago.

There is also speculation that China may enter the export market on the entirely unsupported assumptions that its reactors will be cheap and that it can successfully build them away from home soil. South Africa is particularly enthusiastic about Chinese designs, but whether this enthusiasm can be turned into orders remains to be seen.

The reality is that China needs nuclear power much less than the nuclear industry needs China. For its part, Russia did not order any reactors for its home market for more than two decades after Chernobyl. Six plants, started before Chernobyl, remained under construction for well into the 21st century. All except one (the only one using the Chernobyl design) are now finally on-line. The last was commissioned in 2011 after 25 years under construction.

In 2008, Russia began ordering again with a new design, which it claimed was Gen III+. In 2008-10, the government started construction on two reactors per year. It also reported export orders to Turkey, Vietnam, India and Bulgaria, although serious work has not started on any of these projects as yet. It also brought on line the reactor in Iran started in 1975, a curious mixture that appears to be a Russian reactor inside a Siemens containment.

Whether the new Russian design would satisfy Western regulators is not known, but the Russian vendor, Rosatom, does seem willing to do deals no other vendor would, and not just in Iran. For Turkey, it is contracted to build and operate four reactors, selling much of the power in a fixed price range, reported to be about euro 100-120/MWh ($126.87-152.32/MWh).

For India, it has nearly completed two reactors at Kudankulam and is reported to have agreed to supply ten more, despite Indian law allowing some limited liability for vendors in the case of an accident, a liability that is proscribed by international treaty elsewhere. The question marks against Russia are whether it can penetrate the larger developed country markets, whether it can continue to offer the sort of deals it has recently signed up to, and whether the technology would stand up to Western regulatory scrutiny

India, meanwhile, has always been a country where there would be a huge nuclear market tomorrow. In part, orders have not materialized because of the proliferation issues raised by the country's 1975 nuclear weapons test and New Delhi's refusal to sign the Nuclear Non-proliferation Treaty. However, there are also problems of finance and the country's record on construction time and cost. India's nuclear plants probably have the worst reliability record of any nation in the world. Nearly all the country's existing plants are based on the Canadian CANDU design imported before India's nuclear test explosion in 1975.

The deal in 2007 to get round NPT restrictions has opened the way for a flood of reported orders with Areva (EPRs), Toshiba/Westinghouse (AP1000s) and GE-Hitachi (ABWRs). Each has claimed orders for six reactors on top of the ten reactors ordered from Rosatom. India also plans to build six more of its CANDU design. However, none of these deals looks secure and problems of vendor liability as well as finance - vendors are asking for very strong support from sovereign loan guarantees - may mean few will actually go ahead.

South Korea has established a good reputation for building nuclear plants to cost and time, as well as operating them reliably. However, it was not until 2009 that it entered the international market, selling four reactors to the UAE, undercutting bids by Areva and Toshiba by more than 20%. This caused much soul searching in France and Japan, where the nuclear industry was mortified at being beaten so comprehensively by what they would see as their technological inferiors. The design South Korea offered is based on a US one, the Combustion Engineering System 80+, which was given safety approval in the US in 1997, but which would now require significant upgrades to be licensable in Europe and the US. Work has yet to start in the UAE and it remains to be seen whether South Korea's bid was realistic, or whether it was seriously under-priced, failing to taking into account the issues of building away from home soil. If things go wrong, Korea's entry to the nuclear export market could be short-lived.

Lifetime extensions
Before Fukushima, there was a strong trend to obtain lifetime extensions for existing plants. Particularly in the US and France, there was an expectation that plant life would be extended from 40 to 60 years (and perhaps 80 years). In France, this has worsened Areva's problems because France already has more than enough nuclear capacity. Extending existing plants' life to 60 years would mean that the first replacements would not be needed till nearly 2040, leaving Areva dependent on exports in the meantime.

Nevertheless, if the renaissance is indeed still-born, life extensions would mean vendors would continue to have a strong, safe business for a further 20-30 years, providing services, replacement equipment and fuel. That is how the world nuclear industry has survived the past two decades.

However, while life extensions in the US do not seem to have been affected by Fukushima, very surprisingly, in France, they have. EU-mandated 'stress test' at nuclear plants were widely seen as not being likely to uncover much. Essentially it seemed that safety authorities were being asked to assess whether the reactors they had licensed were indeed safe.

Yet it was the French authorities, not known for their aggressive handling of EDF, that have provided the most significant criticisms of existing plants. In its initial review in September 2011, France's nuclear regulator seemed to be following up on the issues of subcontracting it had identified as causing problems at Flamanville. In January 2012, the regulator signalled that life-extension was not going to be the license to print money it is often seen as. In short, life-extension would cost about euro 1 billion per plant, about the cost projected originally for a brand new plant.

Technological cul-de-sac
If plant life extensions can be achieved in France and the US and Gen III+ does prove a blind alley, it raises the question of what options are open to the nuclear sector. Ten years ago, the industry answer would have been Generation IV designs. Unlike Gen III+, which evolved from existing Pressurised and Boiling Water Reactors, these would be based on radical new technologies. Six technologies were selected by the major nuclear countries as the most promising.

However, ten years on, they seem no closer to commercial deployment. These designs were a mix of designs already pursued, such as sodium cooled fast reactors and helium/graphite high temperature reactors and totally untested options such a lead-cooled fast reactors. The more familiar reactors have a very poor record so far, despite all major nuclear nations trying to develop them over the past 50 years. Demonstration fast reactors like Superphenix, Monju and Dounreay and high temperature reactors like THTR-300 and Fort St Vrain had highly problematic, often short lives.

How the nuclear industry is going to solve problems it has failed to solve over the past 50 years is not clear. The radical new designs require major technological development and progress and it is hard to see who will fund that.

Small Modular Reactors, the latest 'rabbit out the nuclear hat' are generally based on scaled down BWR or PWR technology and illustrate the nuclear industry's schizophrenic attitude to reactor size. This is well illustrated by the history of the AP1000 and the Pebble Bed Modular Reactor. Around 1990, Westinghouse claimed that they had looked for the scale economies of building ever bigger reactors and found they were not there. They therefore developed the AP600 design, half the size of the reactors they had previously been offering. This received regulatory approval from the US authorities in 1997.

However, by then, it was clear that the AP600 was hopelessly uneconomic, so Westinghouse nearly doubled its output in the AP1000, which received final regulatory approval in December 2011. The AP1000 is still proving far too expensive and China is now examining the possibility of scaling it up to 1800 MW to reduce cost.

The PBMR was meant to be a small modular reactor that would fit more easily into small electricity systems. The capacity of sites could be expanded in small steps. The idea was that it could also be upgraded by increasing the coolant temperature from about 850° C to more than 1000° C making it one of the Gen IV designs, the Very High Temperature Reactor. If such temperatures could have been achieved, efficient production of hydrogen from water using a catalytic process would have been feasible.

South Africa licensed pebble bed technology from Germany in 1998, the 80 MW Modul 80 design, and immediately uprated it to 110 MW. What happened over the next decade is not well reported by the South Africans, but after a decade, the project was running about 25 years behind its original schedule, the estimated cost of a demonstration plant had increased 30-fold and a design fit to submit to the regulator had still not been completed. It appears economics were a serious problem because the design was successively uprated from 110 MW to 125 MW, then 137 MW and finally 165 MW. In 2010, the South Africans belatedly admitted defeat. SMRs may turn out to be the latest in a long lineof nuclear designs that looked good on paper, but could not make the transition to commercial technology.

Nuclear prospects
Despite attempts by some governments and the nuclear industry to pretend that the Fukushima disaster is not relevant to future investments, it will be decades before the full impact of Fukushima is understood. Chernobyl was a nuclear power plant of dubious design, operated in an inexplicable way in a decaying Soviet Republic, yet 25 years later, no design that was produced to take account of Chernobyl's lessons has entered service.

Fukushima's technology is much closer to the designs that dominate existing capacity and Gen III+ designs. It was also installed in probably the most technologically sophisticated country in the world and the country that taught the world quality control.

The reality the nuclear industry may have to face is the one that has been around since Three Mile Island, that designing a PWR or BWR that can survive a loss of coolant and loss of site power and still be economic is simply not feasible. Fukushima may therefore mark the effective end of the nuclear renaissance in the West.

Nevertheless, the UK and the US will probably build some new units proving only that if enough public money is thrown at nuclear power, new reactors can be built, but the scale of support needed will limit the number to no more than a handful and, as the lessons from Fukushima emerge, the designs available now may need significant and expensive modification. The prospects are somewhat better in the rest of the world, led by the BRICs, but even there, the question marks over costs and technology may mean that nuclear optimism in those countries proves short-lived.


Lifetime-extension
To emphasise the importance of life-time extension of existing nuclear reactors for the nuclear industry to survive, now new build is not even close to projected numbers, a new research program headed by the US Department of Energy will begin to investigate the case for reactor lifespans of greater than 60 years.

United States
The US system sees reactors originally licensed for a period of 40 years, with the possibility of a one-off 20 year licence renewal. The majority of operating US reactors have already received this and the remainder are expected to eventually apply.

The Light Water Reactor Sustainability (LWRS) program will look to clarify "risks by investigating technical foundations for ensuring the safe and economic operation of reactors in any second life extension period." In an 'integrated program plan' released on 1 February, four distinct research and development pathways were outlined, including materials aging and degradation, advanced light water reactor nuclear fuels, advanced instrumentation, and information and control systems technologies.

The oldest of the 104 operating power reactors in the USA passed the 40 year mark in 2009 and have renewed licences due to expire in 2029. The program report notes that "without further extending reactor lifespans and adding new reactors", nuclear generation in the US will begin to fall off rapidly after 2030 and possibly much sooner.

France
France "has no option but to extend the lifespan of its nuclear power plants as any investments to renew its nuclear capacity or to increase its reliance on other forms of energy would be too costly and come too late", the French Court of Audit said in a report published 31 January 2012. "...In the absence of investment decisions an implicit decision has already been made which commits France either to prolong the reactors' lifespan beyond 40 years or to quickly change the energy mix, which implies more investments," said the report on the costs of the French nuclear power sector.

The Court recommended that the choice of the future of the energy mix should not be made in an implicit manner but that a strategy should be explicitly elaborated, debated and adopted.

The report, commissioned by Prime Minister Francois Fillon in May 2011, comes as France's reliance on nuclear power has become, for the first time ever, part of the country's presidential campaign in the aftermath of Fukushima. While the ruling UMP party plans to maintain the country's nuclear share of 75 percent in the electricity mix, the highest in the world, socialist candidate Francois Hollande said he would bring down that share to 50 percent by 2025.

(Written by WISE Amsterdam)
Sources: World Nuclear News, 3 February 2012 / Reuters, 31 January 2012


Source: February 2012 issue of Platts Energy Economist. Platts is a leading global provider of energy, metals and petrochemicals information.
Web: http://platts.com

 

China: pressure on nuclear power

Nuclear Monitor Issue: 
#721
6109
17/12/2010
Wen Bo, China Coordinator of Global Greengrants Fund
Article

Nuclear energy is regarded by Chinese government as an important way to meet the country's growing appetite for energy and as a way to reduce emission of climate change gases. At local level, provincial government officials also believe nuclear energy projects would stimulate local economy.

Wen Bo - One important nuclear development in China is more and more inland nuclear power plants are being planned. Traditionally, the nuclear power plants are being constructed in coastal provinces where energy needs are greater. As Beijing government starts to focus more on economic growth of inland provinces, nuclear industry has been welcomed by local governments. Among these inland provinces with nuclear plant planned, Hunan and Jiangxi are two important uranium-producing provinces.

Nuclear Safety Concerns
Below are a few documented and reported nuclear-related accidents in China:

  • Factory No. 404 in Gansu, January 7th, 1969, China's first nuclear reactor, about 70 people exposed to excessive radiation.
  • The 300 megawatt Qinshan 1 plant in Zhejiang province was shut down in July, 1998 and left crippled for over 12 month, (source: BBC news report.) According to an interview with a nuclear official, the problem caused bolts holding guide pipes to the main body of the reactor to fall off under strong water pressure.
  • On April 6, 2002, Urunima mine No. 794 under China National Nuclear Corporation at Lantian County, Shaanxi province, 12 people died of poisonous gas.
  • 274 kg Depleted uranium waste material was illegally smuggled from Kyrgyzstan to Akesu of Xinjiang by three metal waste dealers who were not aware what it was.
  • Daya Bay Nuclear Power Station on May 23, 2010, occurred a small leakage at a fuel rod at Unit 2 reactor. A fuel rod leaked traces of radioactive iodine into the surrounding cooling fluid.

Though China has a self-claimed sound nuclear waste storage facility in Northwest Gansu province, nuclear waste transportation over vast Chinese territory still poses potential safety threats. Safety problems over nuclear waste transportation are still being overlooked and the public has no information on these nuclear waste transfers and potential hazardous leaks and impacts.

China Nuclear Safety Bureau Chief Li Ganjie pointed out that China nuclear power development still face problems with lack of qualified experts and technicians, lax operation management and equipment manufacturing. In the light of rapid nuclear power expansion, this would turn into a severe threat towards quality and safety of nuclear power plants.

In China's building construction sector, it was reported that many builders cheated and used less rebar. China nuclear power plant construction is not totally immune to such widespread cheating in building sector. It was reported by apparently individual staff that at Hongheyan Nuclear Power Plant in Liaoning province, after nuclear island foundation excavation, it was discovered in June, 2008, that lowest cemented layer was short of rebar. Local residents near Hongheyan Nuclear Power Plant also reported that some rebars and metals were stolen from the plant's construction site.

Anti-nuclear efforts in China
Victory over Rushan Nuclear Power Plant

Rushan Hongshiding Nuclear Power Plant in Shandong province was first proposed in 2003. At the time, the location for the plant was a remote and sparsely populated coastal region dotted by villages. The place is also adjacent to a beautiful coastal resort called Silver Beach. In the past few years, large number of housing compounds and villas have been constructed. They were mostly purchased by city dwellers around the North China in search of a cheap summer homes or retirement haven, with little or no knowledge of proposed Rushan nuclear power station.

Since 2006, many of these home owners became strong advocates against the proposed project and in 2007, they joined a Beijing-based environmental group Ocean Commune in submitting a petition to State Environmental Protection Agency (now known as Ministry of Environmental Protection) and State Oceanographic Administration. Their argument was to protect the famous Silver Beach from potential destruction and that the area was a more populated community. In addition, they argued the three planned nuclear power stations in Shandong province were too close to each other and investment would be wasted. Due to their persistent efforts, the State Environmental Protection Agency and National Development and Reform Commission did not approve the Rushan project.

While the nuclear power industry is booming, in all the regions where either a nuclear power plant is being built or proposed, local anti-nuclear voices have been raised on websites and internet bulletin boards. However, most of these concerned citizens lack organizations and concrete actions beyond cyberspace.

Corruption in nuclear sector
Kang Rixin, former head of China National Nuclear Corporation was sentenced for life imprisonment in late November. He was charged with accepting bribes of several million dollars from Areva, a French nuclear engineering company for winning bidding of two Guangdong Taishan nuclear reactors in 2007.

Chinese media has widely publicized the arrest of Kang Rixin and subsequent charges and final sentence. Many believe such high profile scandal rocked China's nuclear industry as Kang Rixin was also a member of top level anti-corruption department with Chinese Communist Party.

Though public concern over such high level corruption case has been high, it was viewed as a regular case of governmental anti-corruption drive. Due to the secrecy of the nuclear power plans and deals, the public has yet to relate this case with nuclear safety and potential quality problems.

Road Ahead
Anti-nuclear campaigns are getting momentum and increased media attention in China.

Anti-nuclear campaigns are more likely to succeed if the communities are not limited to nimbyism. There is need to establish a board support base, not limited to one region, against a proposed nuclear power project.

Anti-nuclear efforts need coordination and persistency. Outcries over Internet and media outlets would not generate continuous pressure for possible change of a nuclear power plan. Organized and coordinated actions would provide important opportunities for decision makers who might not be in favor of a nuclear power project and looking for an excuse at the right moment to veto or cancel a nuclear power project.

Though concerns over nuclear safety failure and radiation are legitimate, this concern alone can also easily be bullied aside by repeated assurance from nuclear industries and officials. There is a need to have arguments such as damage to natural and cultural heritage, maintenance of an ecosystem and agricultural production etc.

A nuclear power project would be more likely to be vetoed by decision makers, not due to safety concerns, but over financial security concern. More often, the financial burden and economic bankruptcy become decisive factors for cancellation of a nuclear power project. Thus, anti-nuclear activists need to present a sound and reasonable argument in economical and financial terms.

There is need for broad and basic education on potential nuclear crisis among general public. And a vocal and active campaign to promote renewable energy to replace nuclear power investment are also urgently needed.

Source and contact: Wen Bo, China Coordinator of Global Greengrants Fund
Email: savechinaseas@163.com

Prolonging nuclear power will hinder renewables

Nuclear Monitor Issue: 
#715
6083
03/09/2010
WISE Amsterdam
Article

A new report has outlined why ending the use of nuclear energy matters for the development of renewable energy infrastructure. Electricity needs can entirely be met through renewable energy sources by 2050. The report states the last nuclear power plant can be removed from the grid in 2023 and the last coal-fired power plant in 2046. Extending the lifespans of nuclear power plants would damage vital investment interests and set back the switch to renewable energy by decades.

The study, "2050. Die Zukunft der Energie" (2050. The future of Energy, only available in German), concludes that nuclear is incompatible with renewable energy sources (RES) and that nuclear power plant lifetime-extension will seriously hamper RES-development. With a quick phase-out of nuclear and coal, Germany's electricity consumption could be covered 100 percent by RES by 2030. If coal and nuclear is phased out slowly, it will take until 2050.

The author of the study, Professor Dr. Olav Hohmeyer, is member of the German Expert Council for the Environment (SRU), who advises the German Government, and also vice-chairman of IPCCs working group on climate change mitigation. SRU has recently published an analysis, in which it concludes that the potential of renewable energy outweighs the current and future need for electricity in Europe many times.

In the midst of the ongoing debate over whether to extend the lifespan of Germany's 17 nuclear power plants, German Chancellor Angela Merkel's center-right coalition has said it will raise 2.3 billion euro annually from the fuel-rod tax from 2011 as part of its austerity measures for the coming years. The nuclear tax plan is tied to an ongoing debate about extending the operating lives of nuclear reactors. Above that Merkel said she is in favor of the plant operators making further financial contributions in return for longer reactor operating lives to promote RES.

Germany's nuclear reactor operators -E.ON, RWE, EnBW AG and Vattenfall Europe AG- have warned that the government's plan to tax the fuel could make reactors unprofitable and they were forced to close he power plants (proponents of nuclear power thought that was a stupid threat).

During 2009 four of the 17 nuclear power plants in Germany were out of commission for more than 10 months, and that at times as many as eight of them were out of commission.

On August 30, Angela Merkel, coming off a recent tour of energy facilities around Germany, said in an interview with public broadcaster ARD that "on technical grounds, [an additional] 10 to 15 years is reasonable."

In a statement two days earlier, Merkel said renewable energies should supply half of all energy needs by 2050 and that nuclear and coal power would continue until supplies could be met entirely by clean energy. But that, many say, is a false argument: What is needed is more competition in the field of energy and that will happen if nuclear is phased out and allow investors to install new production capacity.

Electricity in Germany isn’t particularly cheap. In theory, the German power market has been liberalized since 1998, but there is little true competition. The four large nuclear energy firms produce around 80 percent of Germany’s power. This market dominance keeps consumers from profiting from economically produced nuclear power.

If the lifespan of reactors is extended, it will merely cement this dominance – likely leading to higher prices. On the other hand, systematically taking nuclear power plants off the grid would provide openings for potential competitors. Many municipal utilities have already prepared for the nuclear phase-out by investing in renewable energy. Keeping reactors running longer will snuff out their chances before they even get started.

A rapid conversion to renewable energy would have the added benefit of hindering a market-dominating concentration of power production. In the future, electricity creation will be more decentralized and there will be a greater number of providers. Proper competition ensures lower prices and hinders companies from developing a market monopoly.

The ‘2050. Future of Energy’ report claims extending operational life of nuclear power stations will not be as profitable as expected after all, because energy from renewable sources enjoys legal priority over nuclear and coal power. It is fed into the grid before electricity from non-renewable sources.

"Renewable energies are feeding into the system in a flexible way, depending on weather conditions for example," Bjoern Klusmann, director of Germany's Renewable Energy Association told Deutsche Welle. "Because of the priority given to renewables in the German grid, the conventional power stations, so coal and nuclear and other fossil power stations, have to react in a flexible way to the production from renewables. Nuclear energy is not as flexible as is needed for this future concept of renewable energy being the dominant part in our grid."

As the capacity of electricity from wind or solar sources increases, conventional electricity sources will only be needed to fill in gaps when there is a lack of wind or sun. But it takes about 50 hours to restart a nuclear power plant that has been completely shut down, meaning it would be necessary to keep the plant running at 50 or 60 percent capacity. Gas powered turbines, however, can be turned on within 20 minutes and can also be run on biogas. Other possibilities to bridge fluctuations in renewable electricity output include the decentralized approach of using micro-power stations or accessing the batteries of electric cars.

It was calculated that if the lifespan of the power plants were increased by 28 years, energy companies will have to come to terms with turning the reactors off some 15,800 times between 2020 and the date when the last plant is shut down. That would cost the operators between 21 and 80 billion euros (US$26.7 billion to US$101.7 billion).

So it is clear that the nuclear operators will try very hard lobby vehemently to reverse the law giving electricity from RES priority on the grid. And that would be very bad consequence of lifetime extension and hinder the development of RES enormously. That is one of the reasons for the fact that with a quick phase-out of nuclear and coal, Germany's electricity consumption could be covered 100 percent by RES by 2030. If coal and nuclear is phased out slowly, it will take until 2050.

The debate over extending the running time of Germany's nuclear plants has sparked a deep debate in the German parliament. Merkel said any extension would come in a form that circumvents Germany's upper house of parliament, the Bundesrat.

However, doubts have been raised by the interior and justice ministries that an extension of more than 10 years could be illegal if it were not approved by the Bundesrat, which is made up of the governments of Germany's 16 states. And the Bundesrat has a SPD/Green Party majority after the May election in North Rhine-Westphalia.

The government now faces resistance to its plans to postpone the phase-out schedule with nine out of 16 German states opposed to them, including Hamburg, Thuringia and Saarland which are led by Merkel's own Christian Democrats. Ministers from both North Rhine-Westphalia and Rhineland-Palatinate have said that they will press for a judicial review in Germany's Constitutional Court, if the government goes ahead without Bundesrat approval.

A decision on the policy is expected late September.

Sources: FOX Business, 26 August / Deutsche Welle, 26, 28 & 30 August 2010 /  Die Zeit, 27 August 2010 / '2050. Die Energie der Zukunft', University of Flensburg, August 2010, available at www.lichtblick.de/uf/LichtBlick-Zusammenfassung_2050_Die%20Zukunft%20der%20Energie.pdf

About: 
WISE

Stop Nuclear Power - Join the Baltic Sea info tour

Nuclear Monitor Issue: 
#707
6037
15/04/2010
Nuclear Heritage Network
Article

The Baltic Sea Info Tour will inform about nuclear power and its risks as well as about the renewable alternatives. The Tour group will travel around the Baltic Sea in summer 2010, informing and emancipating young people and calling citizens of all ages to raise awareness of the challenges of nuclear industry and current development surrounding the Baltic Sea area.

The Baltic Sea Info Tour is arranged by different groups, organisations and individuals who share the concern of radioactive pollution. The Tour topics will be arranged by local people. Everyone can take part and join the Tour by informing, arranging local action, joining the network meetings, spreading information about nuclear issues or just showing up in the events. Every step counts!

The Baltic Sea is one of the most radioactively polluted sea compared to other water bodies in the world. This has happened mainly because of the radioactive releases of nuclear power plants in the Baltic Sea area (mostly due Swedish and Finnish power plants), the radioactive particles distributed from the Tschernobyl accident, nuclear bomb tests in the atmosphere and Sellafield’s discharges.

Also the Russian and Lithuanian reactors increased the amount of radioactivity in the Baltic Sea. Additionally the proposed uranium mining projects and final disposal sites as well as nuclear transports are strengthening the risk of pollution for the vital sea between Finland, Russia, Baltic States, Poland, Germany, Denmark and Sweden.

Including the impacts of uranium mining, processing of the ore to produce nuclear fuel and the disposal of the created long-life nuclear waste, the operation of nuclear power plants has an immense impact to the global warming. Nuclear power is expensive and dangerous and the resources used in the nuclear industry would be more beneficial for present and future generations if spent in renewable energy systems.

The Info Tour has started as an action of concerned people of the Baltic Sea community. The tour will inform people about the facts of uranium energy and radioactive pollution of the Baltic Sea. The tour will activate and emancipate people to take part in the events of the local stops. The Tour will advance active courage both locally and in large social and ecological systems.

The tour is an informative event, dedicated to the Baltic Sea, embracing the communities surrounding the Baltic Sea. We want to discuss the challenges with people living across the Baltic Sea and to give more information about certain issues connected to radioactivity, nuclear power and renewable alternatives.

The Baltic Sea Info Tour will consist of different kinds of activities: street actions, information events, workshops, performances, discussions, local gatherings, spreading of flyers and posters. The Tour will include several stops in the Baltic Sea countries. It will start from Finland in June and end in Finland in August 2010 visiting: Russia, Estonia, Latvia, Belarus, Poland, Germany, Denmark and Sweden.

Contact: Baltic Sea Info Tour.
Tel. +358 41 7243254
e-mail: contact@nuclear-heritage.net
web: http://baltic-tour.nuclear-heritage.net

Pages